Hydrogen Sulfide Oxidation is Coupled to Oxidative Phosphorylation in Mitochondria of Solemya reidi

Solemya reidi, a gutless clam found in sulfide-rich habitats, contains within its gills bacterial symbionts thought to oxidize sulfur compounds and provide a reduced carbon food source to the clam. However, the initial step or steps in sulfide oxidation occur in the animal tissue, and mitochondria i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 1986-08, Vol.233 (4763), p.563-566
Hauptverfasser: Powell, Mark A., Somero, George N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 566
container_issue 4763
container_start_page 563
container_title Science (American Association for the Advancement of Science)
container_volume 233
creator Powell, Mark A.
Somero, George N.
description Solemya reidi, a gutless clam found in sulfide-rich habitats, contains within its gills bacterial symbionts thought to oxidize sulfur compounds and provide a reduced carbon food source to the clam. However, the initial step or steps in sulfide oxidation occur in the animal tissue, and mitochondria isolated from both gill and symbiont-free foot tissue of the clam coupled the oxidation of sulfide to oxidative phosphorylation [adenosine triphosphate (ATP) synthesis]. The ability of Solemya reidi to exploit directly the energy in sulfide for ATP synthesis is unprecedented, and suggests that sulfide-habitat animals that lack bacterial symbionts may also use sulfide as an inorganic energy source.
doi_str_mv 10.1126/science.233.4763.563
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_733212432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A4329742</galeid><jstor_id>1697632</jstor_id><sourcerecordid>A4329742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c768t-ad03bdd102be686f74afef41e8b24676ad0d1d0ff9af02bd6c24e369050ab8233</originalsourceid><addsrcrecordid>eNqN019v0zAQAPAIgVgZfIMJRQixh9HiP4mTPI4KukmFIhV4tVz73LpK42InaP32XNWyDqliVR4i2T9fcue7JLmgZEApEx-idtBoGDDOB1kh-CAX_EnSo6TK-xUj_GnSI4SLfkmK_Cx5EeOSENyr-PPkjBYlI5koeom-2Zjg59Ck0662zkA6uXNGtc43qYvp0HfrGkza-r_rvyH9tvBxvfBhU-9dk35xrdcL35jgVOptOvU1rDYqDeCMe5k8s6qO8Gr_Pk9-fP70fXjTH09Gt8PrcV8Xomz7yhA-M4YSNgNRCltkyoLNKJQzhv8qcN9QQ6ytlEVjhGYZcFGRnKhZiWU4T97s4vrYOon1aUEvtG8a0K0sMEZVZIgud2gd_K8OYitXLmqoa9WA76IsOGeUZZyhfPdfyXPGMqzwo5BRWlCR80chzVnOSZUdMrmHS9-FBouHwfC7omIloqsdmqsapGusb4PSeJUQVO0bsA6XrzETTHubzfsjGh8DK6eP8Mt_OIoW7tq56mKUt9Ovp8rJz1Plx9GJshyNH8qrY1L7uoY5SOyv4eShznZaBx9jACvXwa1U2EhK5Haq5H6qJLaT3E6VxKnCY6_319HNVmAOh_ZjhODtHqioVW2DarSL964sKk6KbZyLHVvG1odDGGxMgQ33B-4zMLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213526928</pqid></control><display><type>article</type><title>Hydrogen Sulfide Oxidation is Coupled to Oxidative Phosphorylation in Mitochondria of Solemya reidi</title><source>JSTOR Archive Collection A-Z Listing</source><source>American Association for the Advancement of Science</source><creator>Powell, Mark A. ; Somero, George N.</creator><creatorcontrib>Powell, Mark A. ; Somero, George N. ; Univ. of California, San Diego, La Jolla</creatorcontrib><description>Solemya reidi, a gutless clam found in sulfide-rich habitats, contains within its gills bacterial symbionts thought to oxidize sulfur compounds and provide a reduced carbon food source to the clam. However, the initial step or steps in sulfide oxidation occur in the animal tissue, and mitochondria isolated from both gill and symbiont-free foot tissue of the clam coupled the oxidation of sulfide to oxidative phosphorylation [adenosine triphosphate (ATP) synthesis]. The ability of Solemya reidi to exploit directly the energy in sulfide for ATP synthesis is unprecedented, and suggests that sulfide-habitat animals that lack bacterial symbionts may also use sulfide as an inorganic energy source.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.233.4763.563</identifier><identifier>PMID: 17820467</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: The American Association for the Advancement of Science</publisher><subject>550200 - Biochemistry ; ANIMALS ; AQUATIC ORGANISMS ; AROMATICS ; ATP ; Bacteria ; BASIC BIOLOGICAL SCIENCES ; BIOCHEMISTRY ; Biological and medical sciences ; BIOSYNTHESIS ; CELL CONSTITUENTS ; Cell growth ; Cell lines ; CHALCOGENIDES ; CHEMICAL REACTIONS ; CHEMISTRY ; CLAMS ; CYANIDES ; DATA ; Digestive system ; DINITROPHENOL ; EXPERIMENTAL DATA ; Fundamental and applied biological sciences. Psychology ; GILLS ; Health aspects ; HYDROGEN COMPOUNDS ; HYDROGEN SULFIDES ; HYDROXY COMPOUNDS ; INFORMATION ; INVERTEBRATES ; Marine ; Marine biology ; MITOCHONDRIA ; Mollusca ; MOLLUSCS ; NITRO COMPOUNDS ; NUCLEOTIDES ; NUMERICAL DATA ; ORGANIC COMPOUNDS ; ORGANIC NITROGEN COMPOUNDS ; ORGANOIDS ; OXIDATION ; Oxygen ; Oxygen consumption ; PHENOLS ; PHOSPHORYLATION ; Physiological aspects ; Physiology. Development ; RESPIRATORY SYSTEM ; Solemya reidi ; Spleen cells ; SULFIDES ; Sulfur ; SULFUR COMPOUNDS ; SYNTHESIS</subject><ispartof>Science (American Association for the Advancement of Science), 1986-08, Vol.233 (4763), p.563-566</ispartof><rights>Copyright 1986 The American Association for the Advancement of Science</rights><rights>1986 INIST-CNRS</rights><rights>COPYRIGHT 1986 American Association for the Advancement of Science</rights><rights>COPYRIGHT 1986 American Association for the Advancement of Science</rights><rights>Copyright American Association for the Advancement of Science Aug 1, 1986</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c768t-ad03bdd102be686f74afef41e8b24676ad0d1d0ff9af02bd6c24e369050ab8233</citedby><cites>FETCH-LOGICAL-c768t-ad03bdd102be686f74afef41e8b24676ad0d1d0ff9af02bd6c24e369050ab8233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1697632$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1697632$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,885,2884,2885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8793073$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17820467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7246974$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Powell, Mark A.</creatorcontrib><creatorcontrib>Somero, George N.</creatorcontrib><creatorcontrib>Univ. of California, San Diego, La Jolla</creatorcontrib><title>Hydrogen Sulfide Oxidation is Coupled to Oxidative Phosphorylation in Mitochondria of Solemya reidi</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Solemya reidi, a gutless clam found in sulfide-rich habitats, contains within its gills bacterial symbionts thought to oxidize sulfur compounds and provide a reduced carbon food source to the clam. However, the initial step or steps in sulfide oxidation occur in the animal tissue, and mitochondria isolated from both gill and symbiont-free foot tissue of the clam coupled the oxidation of sulfide to oxidative phosphorylation [adenosine triphosphate (ATP) synthesis]. The ability of Solemya reidi to exploit directly the energy in sulfide for ATP synthesis is unprecedented, and suggests that sulfide-habitat animals that lack bacterial symbionts may also use sulfide as an inorganic energy source.</description><subject>550200 - Biochemistry</subject><subject>ANIMALS</subject><subject>AQUATIC ORGANISMS</subject><subject>AROMATICS</subject><subject>ATP</subject><subject>Bacteria</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>BIOCHEMISTRY</subject><subject>Biological and medical sciences</subject><subject>BIOSYNTHESIS</subject><subject>CELL CONSTITUENTS</subject><subject>Cell growth</subject><subject>Cell lines</subject><subject>CHALCOGENIDES</subject><subject>CHEMICAL REACTIONS</subject><subject>CHEMISTRY</subject><subject>CLAMS</subject><subject>CYANIDES</subject><subject>DATA</subject><subject>Digestive system</subject><subject>DINITROPHENOL</subject><subject>EXPERIMENTAL DATA</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GILLS</subject><subject>Health aspects</subject><subject>HYDROGEN COMPOUNDS</subject><subject>HYDROGEN SULFIDES</subject><subject>HYDROXY COMPOUNDS</subject><subject>INFORMATION</subject><subject>INVERTEBRATES</subject><subject>Marine</subject><subject>Marine biology</subject><subject>MITOCHONDRIA</subject><subject>Mollusca</subject><subject>MOLLUSCS</subject><subject>NITRO COMPOUNDS</subject><subject>NUCLEOTIDES</subject><subject>NUMERICAL DATA</subject><subject>ORGANIC COMPOUNDS</subject><subject>ORGANIC NITROGEN COMPOUNDS</subject><subject>ORGANOIDS</subject><subject>OXIDATION</subject><subject>Oxygen</subject><subject>Oxygen consumption</subject><subject>PHENOLS</subject><subject>PHOSPHORYLATION</subject><subject>Physiological aspects</subject><subject>Physiology. Development</subject><subject>RESPIRATORY SYSTEM</subject><subject>Solemya reidi</subject><subject>Spleen cells</subject><subject>SULFIDES</subject><subject>Sulfur</subject><subject>SULFUR COMPOUNDS</subject><subject>SYNTHESIS</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNqN019v0zAQAPAIgVgZfIMJRQixh9HiP4mTPI4KukmFIhV4tVz73LpK42InaP32XNWyDqliVR4i2T9fcue7JLmgZEApEx-idtBoGDDOB1kh-CAX_EnSo6TK-xUj_GnSI4SLfkmK_Cx5EeOSENyr-PPkjBYlI5koeom-2Zjg59Ck0662zkA6uXNGtc43qYvp0HfrGkza-r_rvyH9tvBxvfBhU-9dk35xrdcL35jgVOptOvU1rDYqDeCMe5k8s6qO8Gr_Pk9-fP70fXjTH09Gt8PrcV8Xomz7yhA-M4YSNgNRCltkyoLNKJQzhv8qcN9QQ6ytlEVjhGYZcFGRnKhZiWU4T97s4vrYOon1aUEvtG8a0K0sMEZVZIgud2gd_K8OYitXLmqoa9WA76IsOGeUZZyhfPdfyXPGMqzwo5BRWlCR80chzVnOSZUdMrmHS9-FBouHwfC7omIloqsdmqsapGusb4PSeJUQVO0bsA6XrzETTHubzfsjGh8DK6eP8Mt_OIoW7tq56mKUt9Ovp8rJz1Plx9GJshyNH8qrY1L7uoY5SOyv4eShznZaBx9jACvXwa1U2EhK5Haq5H6qJLaT3E6VxKnCY6_319HNVmAOh_ZjhODtHqioVW2DarSL964sKk6KbZyLHVvG1odDGGxMgQ33B-4zMLQ</recordid><startdate>19860801</startdate><enddate>19860801</enddate><creator>Powell, Mark A.</creator><creator>Somero, George N.</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19860801</creationdate><title>Hydrogen Sulfide Oxidation is Coupled to Oxidative Phosphorylation in Mitochondria of Solemya reidi</title><author>Powell, Mark A. ; Somero, George N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c768t-ad03bdd102be686f74afef41e8b24676ad0d1d0ff9af02bd6c24e369050ab8233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>550200 - Biochemistry</topic><topic>ANIMALS</topic><topic>AQUATIC ORGANISMS</topic><topic>AROMATICS</topic><topic>ATP</topic><topic>Bacteria</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>BIOCHEMISTRY</topic><topic>Biological and medical sciences</topic><topic>BIOSYNTHESIS</topic><topic>CELL CONSTITUENTS</topic><topic>Cell growth</topic><topic>Cell lines</topic><topic>CHALCOGENIDES</topic><topic>CHEMICAL REACTIONS</topic><topic>CHEMISTRY</topic><topic>CLAMS</topic><topic>CYANIDES</topic><topic>DATA</topic><topic>Digestive system</topic><topic>DINITROPHENOL</topic><topic>EXPERIMENTAL DATA</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GILLS</topic><topic>Health aspects</topic><topic>HYDROGEN COMPOUNDS</topic><topic>HYDROGEN SULFIDES</topic><topic>HYDROXY COMPOUNDS</topic><topic>INFORMATION</topic><topic>INVERTEBRATES</topic><topic>Marine</topic><topic>Marine biology</topic><topic>MITOCHONDRIA</topic><topic>Mollusca</topic><topic>MOLLUSCS</topic><topic>NITRO COMPOUNDS</topic><topic>NUCLEOTIDES</topic><topic>NUMERICAL DATA</topic><topic>ORGANIC COMPOUNDS</topic><topic>ORGANIC NITROGEN COMPOUNDS</topic><topic>ORGANOIDS</topic><topic>OXIDATION</topic><topic>Oxygen</topic><topic>Oxygen consumption</topic><topic>PHENOLS</topic><topic>PHOSPHORYLATION</topic><topic>Physiological aspects</topic><topic>Physiology. Development</topic><topic>RESPIRATORY SYSTEM</topic><topic>Solemya reidi</topic><topic>Spleen cells</topic><topic>SULFIDES</topic><topic>Sulfur</topic><topic>SULFUR COMPOUNDS</topic><topic>SYNTHESIS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Powell, Mark A.</creatorcontrib><creatorcontrib>Somero, George N.</creatorcontrib><creatorcontrib>Univ. of California, San Diego, La Jolla</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Biography</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Powell, Mark A.</au><au>Somero, George N.</au><aucorp>Univ. of California, San Diego, La Jolla</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen Sulfide Oxidation is Coupled to Oxidative Phosphorylation in Mitochondria of Solemya reidi</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1986-08-01</date><risdate>1986</risdate><volume>233</volume><issue>4763</issue><spage>563</spage><epage>566</epage><pages>563-566</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Solemya reidi, a gutless clam found in sulfide-rich habitats, contains within its gills bacterial symbionts thought to oxidize sulfur compounds and provide a reduced carbon food source to the clam. However, the initial step or steps in sulfide oxidation occur in the animal tissue, and mitochondria isolated from both gill and symbiont-free foot tissue of the clam coupled the oxidation of sulfide to oxidative phosphorylation [adenosine triphosphate (ATP) synthesis]. The ability of Solemya reidi to exploit directly the energy in sulfide for ATP synthesis is unprecedented, and suggests that sulfide-habitat animals that lack bacterial symbionts may also use sulfide as an inorganic energy source.</abstract><cop>Washington, DC</cop><pub>The American Association for the Advancement of Science</pub><pmid>17820467</pmid><doi>10.1126/science.233.4763.563</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 1986-08, Vol.233 (4763), p.563-566
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_733212432
source JSTOR Archive Collection A-Z Listing; American Association for the Advancement of Science
subjects 550200 - Biochemistry
ANIMALS
AQUATIC ORGANISMS
AROMATICS
ATP
Bacteria
BASIC BIOLOGICAL SCIENCES
BIOCHEMISTRY
Biological and medical sciences
BIOSYNTHESIS
CELL CONSTITUENTS
Cell growth
Cell lines
CHALCOGENIDES
CHEMICAL REACTIONS
CHEMISTRY
CLAMS
CYANIDES
DATA
Digestive system
DINITROPHENOL
EXPERIMENTAL DATA
Fundamental and applied biological sciences. Psychology
GILLS
Health aspects
HYDROGEN COMPOUNDS
HYDROGEN SULFIDES
HYDROXY COMPOUNDS
INFORMATION
INVERTEBRATES
Marine
Marine biology
MITOCHONDRIA
Mollusca
MOLLUSCS
NITRO COMPOUNDS
NUCLEOTIDES
NUMERICAL DATA
ORGANIC COMPOUNDS
ORGANIC NITROGEN COMPOUNDS
ORGANOIDS
OXIDATION
Oxygen
Oxygen consumption
PHENOLS
PHOSPHORYLATION
Physiological aspects
Physiology. Development
RESPIRATORY SYSTEM
Solemya reidi
Spleen cells
SULFIDES
Sulfur
SULFUR COMPOUNDS
SYNTHESIS
title Hydrogen Sulfide Oxidation is Coupled to Oxidative Phosphorylation in Mitochondria of Solemya reidi
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20Sulfide%20Oxidation%20is%20Coupled%20to%20Oxidative%20Phosphorylation%20in%20Mitochondria%20of%20Solemya%20reidi&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Powell,%20Mark%20A.&rft.aucorp=Univ.%20of%20California,%20San%20Diego,%20La%20Jolla&rft.date=1986-08-01&rft.volume=233&rft.issue=4763&rft.spage=563&rft.epage=566&rft.pages=563-566&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.233.4763.563&rft_dat=%3Cgale_osti_%3EA4329742%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213526928&rft_id=info:pmid/17820467&rft_galeid=A4329742&rft_jstor_id=1697632&rfr_iscdi=true