Hydrogen Sulfide Oxidation is Coupled to Oxidative Phosphorylation in Mitochondria of Solemya reidi
Solemya reidi, a gutless clam found in sulfide-rich habitats, contains within its gills bacterial symbionts thought to oxidize sulfur compounds and provide a reduced carbon food source to the clam. However, the initial step or steps in sulfide oxidation occur in the animal tissue, and mitochondria i...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 1986-08, Vol.233 (4763), p.563-566 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 566 |
---|---|
container_issue | 4763 |
container_start_page | 563 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 233 |
creator | Powell, Mark A. Somero, George N. |
description | Solemya reidi, a gutless clam found in sulfide-rich habitats, contains within its gills bacterial symbionts thought to oxidize sulfur compounds and provide a reduced carbon food source to the clam. However, the initial step or steps in sulfide oxidation occur in the animal tissue, and mitochondria isolated from both gill and symbiont-free foot tissue of the clam coupled the oxidation of sulfide to oxidative phosphorylation [adenosine triphosphate (ATP) synthesis]. The ability of Solemya reidi to exploit directly the energy in sulfide for ATP synthesis is unprecedented, and suggests that sulfide-habitat animals that lack bacterial symbionts may also use sulfide as an inorganic energy source. |
doi_str_mv | 10.1126/science.233.4763.563 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_733212432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A4329742</galeid><jstor_id>1697632</jstor_id><sourcerecordid>A4329742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c768t-ad03bdd102be686f74afef41e8b24676ad0d1d0ff9af02bd6c24e369050ab8233</originalsourceid><addsrcrecordid>eNqN019v0zAQAPAIgVgZfIMJRQixh9HiP4mTPI4KukmFIhV4tVz73LpK42InaP32XNWyDqliVR4i2T9fcue7JLmgZEApEx-idtBoGDDOB1kh-CAX_EnSo6TK-xUj_GnSI4SLfkmK_Cx5EeOSENyr-PPkjBYlI5koeom-2Zjg59Ck0662zkA6uXNGtc43qYvp0HfrGkza-r_rvyH9tvBxvfBhU-9dk35xrdcL35jgVOptOvU1rDYqDeCMe5k8s6qO8Gr_Pk9-fP70fXjTH09Gt8PrcV8Xomz7yhA-M4YSNgNRCltkyoLNKJQzhv8qcN9QQ6ytlEVjhGYZcFGRnKhZiWU4T97s4vrYOon1aUEvtG8a0K0sMEZVZIgud2gd_K8OYitXLmqoa9WA76IsOGeUZZyhfPdfyXPGMqzwo5BRWlCR80chzVnOSZUdMrmHS9-FBouHwfC7omIloqsdmqsapGusb4PSeJUQVO0bsA6XrzETTHubzfsjGh8DK6eP8Mt_OIoW7tq56mKUt9Ovp8rJz1Plx9GJshyNH8qrY1L7uoY5SOyv4eShznZaBx9jACvXwa1U2EhK5Haq5H6qJLaT3E6VxKnCY6_319HNVmAOh_ZjhODtHqioVW2DarSL964sKk6KbZyLHVvG1odDGGxMgQ33B-4zMLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213526928</pqid></control><display><type>article</type><title>Hydrogen Sulfide Oxidation is Coupled to Oxidative Phosphorylation in Mitochondria of Solemya reidi</title><source>JSTOR Archive Collection A-Z Listing</source><source>American Association for the Advancement of Science</source><creator>Powell, Mark A. ; Somero, George N.</creator><creatorcontrib>Powell, Mark A. ; Somero, George N. ; Univ. of California, San Diego, La Jolla</creatorcontrib><description>Solemya reidi, a gutless clam found in sulfide-rich habitats, contains within its gills bacterial symbionts thought to oxidize sulfur compounds and provide a reduced carbon food source to the clam. However, the initial step or steps in sulfide oxidation occur in the animal tissue, and mitochondria isolated from both gill and symbiont-free foot tissue of the clam coupled the oxidation of sulfide to oxidative phosphorylation [adenosine triphosphate (ATP) synthesis]. The ability of Solemya reidi to exploit directly the energy in sulfide for ATP synthesis is unprecedented, and suggests that sulfide-habitat animals that lack bacterial symbionts may also use sulfide as an inorganic energy source.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.233.4763.563</identifier><identifier>PMID: 17820467</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: The American Association for the Advancement of Science</publisher><subject>550200 - Biochemistry ; ANIMALS ; AQUATIC ORGANISMS ; AROMATICS ; ATP ; Bacteria ; BASIC BIOLOGICAL SCIENCES ; BIOCHEMISTRY ; Biological and medical sciences ; BIOSYNTHESIS ; CELL CONSTITUENTS ; Cell growth ; Cell lines ; CHALCOGENIDES ; CHEMICAL REACTIONS ; CHEMISTRY ; CLAMS ; CYANIDES ; DATA ; Digestive system ; DINITROPHENOL ; EXPERIMENTAL DATA ; Fundamental and applied biological sciences. Psychology ; GILLS ; Health aspects ; HYDROGEN COMPOUNDS ; HYDROGEN SULFIDES ; HYDROXY COMPOUNDS ; INFORMATION ; INVERTEBRATES ; Marine ; Marine biology ; MITOCHONDRIA ; Mollusca ; MOLLUSCS ; NITRO COMPOUNDS ; NUCLEOTIDES ; NUMERICAL DATA ; ORGANIC COMPOUNDS ; ORGANIC NITROGEN COMPOUNDS ; ORGANOIDS ; OXIDATION ; Oxygen ; Oxygen consumption ; PHENOLS ; PHOSPHORYLATION ; Physiological aspects ; Physiology. Development ; RESPIRATORY SYSTEM ; Solemya reidi ; Spleen cells ; SULFIDES ; Sulfur ; SULFUR COMPOUNDS ; SYNTHESIS</subject><ispartof>Science (American Association for the Advancement of Science), 1986-08, Vol.233 (4763), p.563-566</ispartof><rights>Copyright 1986 The American Association for the Advancement of Science</rights><rights>1986 INIST-CNRS</rights><rights>COPYRIGHT 1986 American Association for the Advancement of Science</rights><rights>COPYRIGHT 1986 American Association for the Advancement of Science</rights><rights>Copyright American Association for the Advancement of Science Aug 1, 1986</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c768t-ad03bdd102be686f74afef41e8b24676ad0d1d0ff9af02bd6c24e369050ab8233</citedby><cites>FETCH-LOGICAL-c768t-ad03bdd102be686f74afef41e8b24676ad0d1d0ff9af02bd6c24e369050ab8233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1697632$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1697632$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,885,2884,2885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8793073$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17820467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7246974$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Powell, Mark A.</creatorcontrib><creatorcontrib>Somero, George N.</creatorcontrib><creatorcontrib>Univ. of California, San Diego, La Jolla</creatorcontrib><title>Hydrogen Sulfide Oxidation is Coupled to Oxidative Phosphorylation in Mitochondria of Solemya reidi</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Solemya reidi, a gutless clam found in sulfide-rich habitats, contains within its gills bacterial symbionts thought to oxidize sulfur compounds and provide a reduced carbon food source to the clam. However, the initial step or steps in sulfide oxidation occur in the animal tissue, and mitochondria isolated from both gill and symbiont-free foot tissue of the clam coupled the oxidation of sulfide to oxidative phosphorylation [adenosine triphosphate (ATP) synthesis]. The ability of Solemya reidi to exploit directly the energy in sulfide for ATP synthesis is unprecedented, and suggests that sulfide-habitat animals that lack bacterial symbionts may also use sulfide as an inorganic energy source.</description><subject>550200 - Biochemistry</subject><subject>ANIMALS</subject><subject>AQUATIC ORGANISMS</subject><subject>AROMATICS</subject><subject>ATP</subject><subject>Bacteria</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>BIOCHEMISTRY</subject><subject>Biological and medical sciences</subject><subject>BIOSYNTHESIS</subject><subject>CELL CONSTITUENTS</subject><subject>Cell growth</subject><subject>Cell lines</subject><subject>CHALCOGENIDES</subject><subject>CHEMICAL REACTIONS</subject><subject>CHEMISTRY</subject><subject>CLAMS</subject><subject>CYANIDES</subject><subject>DATA</subject><subject>Digestive system</subject><subject>DINITROPHENOL</subject><subject>EXPERIMENTAL DATA</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GILLS</subject><subject>Health aspects</subject><subject>HYDROGEN COMPOUNDS</subject><subject>HYDROGEN SULFIDES</subject><subject>HYDROXY COMPOUNDS</subject><subject>INFORMATION</subject><subject>INVERTEBRATES</subject><subject>Marine</subject><subject>Marine biology</subject><subject>MITOCHONDRIA</subject><subject>Mollusca</subject><subject>MOLLUSCS</subject><subject>NITRO COMPOUNDS</subject><subject>NUCLEOTIDES</subject><subject>NUMERICAL DATA</subject><subject>ORGANIC COMPOUNDS</subject><subject>ORGANIC NITROGEN COMPOUNDS</subject><subject>ORGANOIDS</subject><subject>OXIDATION</subject><subject>Oxygen</subject><subject>Oxygen consumption</subject><subject>PHENOLS</subject><subject>PHOSPHORYLATION</subject><subject>Physiological aspects</subject><subject>Physiology. Development</subject><subject>RESPIRATORY SYSTEM</subject><subject>Solemya reidi</subject><subject>Spleen cells</subject><subject>SULFIDES</subject><subject>Sulfur</subject><subject>SULFUR COMPOUNDS</subject><subject>SYNTHESIS</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNqN019v0zAQAPAIgVgZfIMJRQixh9HiP4mTPI4KukmFIhV4tVz73LpK42InaP32XNWyDqliVR4i2T9fcue7JLmgZEApEx-idtBoGDDOB1kh-CAX_EnSo6TK-xUj_GnSI4SLfkmK_Cx5EeOSENyr-PPkjBYlI5koeom-2Zjg59Ck0662zkA6uXNGtc43qYvp0HfrGkza-r_rvyH9tvBxvfBhU-9dk35xrdcL35jgVOptOvU1rDYqDeCMe5k8s6qO8Gr_Pk9-fP70fXjTH09Gt8PrcV8Xomz7yhA-M4YSNgNRCltkyoLNKJQzhv8qcN9QQ6ytlEVjhGYZcFGRnKhZiWU4T97s4vrYOon1aUEvtG8a0K0sMEZVZIgud2gd_K8OYitXLmqoa9WA76IsOGeUZZyhfPdfyXPGMqzwo5BRWlCR80chzVnOSZUdMrmHS9-FBouHwfC7omIloqsdmqsapGusb4PSeJUQVO0bsA6XrzETTHubzfsjGh8DK6eP8Mt_OIoW7tq56mKUt9Ovp8rJz1Plx9GJshyNH8qrY1L7uoY5SOyv4eShznZaBx9jACvXwa1U2EhK5Haq5H6qJLaT3E6VxKnCY6_319HNVmAOh_ZjhODtHqioVW2DarSL964sKk6KbZyLHVvG1odDGGxMgQ33B-4zMLQ</recordid><startdate>19860801</startdate><enddate>19860801</enddate><creator>Powell, Mark A.</creator><creator>Somero, George N.</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19860801</creationdate><title>Hydrogen Sulfide Oxidation is Coupled to Oxidative Phosphorylation in Mitochondria of Solemya reidi</title><author>Powell, Mark A. ; Somero, George N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c768t-ad03bdd102be686f74afef41e8b24676ad0d1d0ff9af02bd6c24e369050ab8233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>550200 - Biochemistry</topic><topic>ANIMALS</topic><topic>AQUATIC ORGANISMS</topic><topic>AROMATICS</topic><topic>ATP</topic><topic>Bacteria</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>BIOCHEMISTRY</topic><topic>Biological and medical sciences</topic><topic>BIOSYNTHESIS</topic><topic>CELL CONSTITUENTS</topic><topic>Cell growth</topic><topic>Cell lines</topic><topic>CHALCOGENIDES</topic><topic>CHEMICAL REACTIONS</topic><topic>CHEMISTRY</topic><topic>CLAMS</topic><topic>CYANIDES</topic><topic>DATA</topic><topic>Digestive system</topic><topic>DINITROPHENOL</topic><topic>EXPERIMENTAL DATA</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GILLS</topic><topic>Health aspects</topic><topic>HYDROGEN COMPOUNDS</topic><topic>HYDROGEN SULFIDES</topic><topic>HYDROXY COMPOUNDS</topic><topic>INFORMATION</topic><topic>INVERTEBRATES</topic><topic>Marine</topic><topic>Marine biology</topic><topic>MITOCHONDRIA</topic><topic>Mollusca</topic><topic>MOLLUSCS</topic><topic>NITRO COMPOUNDS</topic><topic>NUCLEOTIDES</topic><topic>NUMERICAL DATA</topic><topic>ORGANIC COMPOUNDS</topic><topic>ORGANIC NITROGEN COMPOUNDS</topic><topic>ORGANOIDS</topic><topic>OXIDATION</topic><topic>Oxygen</topic><topic>Oxygen consumption</topic><topic>PHENOLS</topic><topic>PHOSPHORYLATION</topic><topic>Physiological aspects</topic><topic>Physiology. Development</topic><topic>RESPIRATORY SYSTEM</topic><topic>Solemya reidi</topic><topic>Spleen cells</topic><topic>SULFIDES</topic><topic>Sulfur</topic><topic>SULFUR COMPOUNDS</topic><topic>SYNTHESIS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Powell, Mark A.</creatorcontrib><creatorcontrib>Somero, George N.</creatorcontrib><creatorcontrib>Univ. of California, San Diego, La Jolla</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Biography</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Powell, Mark A.</au><au>Somero, George N.</au><aucorp>Univ. of California, San Diego, La Jolla</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen Sulfide Oxidation is Coupled to Oxidative Phosphorylation in Mitochondria of Solemya reidi</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1986-08-01</date><risdate>1986</risdate><volume>233</volume><issue>4763</issue><spage>563</spage><epage>566</epage><pages>563-566</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Solemya reidi, a gutless clam found in sulfide-rich habitats, contains within its gills bacterial symbionts thought to oxidize sulfur compounds and provide a reduced carbon food source to the clam. However, the initial step or steps in sulfide oxidation occur in the animal tissue, and mitochondria isolated from both gill and symbiont-free foot tissue of the clam coupled the oxidation of sulfide to oxidative phosphorylation [adenosine triphosphate (ATP) synthesis]. The ability of Solemya reidi to exploit directly the energy in sulfide for ATP synthesis is unprecedented, and suggests that sulfide-habitat animals that lack bacterial symbionts may also use sulfide as an inorganic energy source.</abstract><cop>Washington, DC</cop><pub>The American Association for the Advancement of Science</pub><pmid>17820467</pmid><doi>10.1126/science.233.4763.563</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 1986-08, Vol.233 (4763), p.563-566 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_733212432 |
source | JSTOR Archive Collection A-Z Listing; American Association for the Advancement of Science |
subjects | 550200 - Biochemistry ANIMALS AQUATIC ORGANISMS AROMATICS ATP Bacteria BASIC BIOLOGICAL SCIENCES BIOCHEMISTRY Biological and medical sciences BIOSYNTHESIS CELL CONSTITUENTS Cell growth Cell lines CHALCOGENIDES CHEMICAL REACTIONS CHEMISTRY CLAMS CYANIDES DATA Digestive system DINITROPHENOL EXPERIMENTAL DATA Fundamental and applied biological sciences. Psychology GILLS Health aspects HYDROGEN COMPOUNDS HYDROGEN SULFIDES HYDROXY COMPOUNDS INFORMATION INVERTEBRATES Marine Marine biology MITOCHONDRIA Mollusca MOLLUSCS NITRO COMPOUNDS NUCLEOTIDES NUMERICAL DATA ORGANIC COMPOUNDS ORGANIC NITROGEN COMPOUNDS ORGANOIDS OXIDATION Oxygen Oxygen consumption PHENOLS PHOSPHORYLATION Physiological aspects Physiology. Development RESPIRATORY SYSTEM Solemya reidi Spleen cells SULFIDES Sulfur SULFUR COMPOUNDS SYNTHESIS |
title | Hydrogen Sulfide Oxidation is Coupled to Oxidative Phosphorylation in Mitochondria of Solemya reidi |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20Sulfide%20Oxidation%20is%20Coupled%20to%20Oxidative%20Phosphorylation%20in%20Mitochondria%20of%20Solemya%20reidi&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Powell,%20Mark%20A.&rft.aucorp=Univ.%20of%20California,%20San%20Diego,%20La%20Jolla&rft.date=1986-08-01&rft.volume=233&rft.issue=4763&rft.spage=563&rft.epage=566&rft.pages=563-566&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.233.4763.563&rft_dat=%3Cgale_osti_%3EA4329742%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213526928&rft_id=info:pmid/17820467&rft_galeid=A4329742&rft_jstor_id=1697632&rfr_iscdi=true |