The Large Crater Origin of SNC Meteorites
A large body of evidence strongly suggests that the shergottite, nakhlite, and Chassigny (SNC) meteorites are from Mars. Various mechanisms for the ejection of large rocks at martian escape velocity (5 kilometers per second) have been investigated, but none has proved wholly satisfactory. This artic...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 1987-08, Vol.237 (4816), p.738-743 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 743 |
---|---|
container_issue | 4816 |
container_start_page | 738 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 237 |
creator | Vickery, A. M. Melosh, H. J. |
description | A large body of evidence strongly suggests that the shergottite, nakhlite, and Chassigny (SNC) meteorites are from Mars. Various mechanisms for the ejection of large rocks at martian escape velocity (5 kilometers per second) have been investigated, but none has proved wholly satisfactory. This article examines a number of possible ejection and cosmic-ray exposure histories to determine which is most plausible. For each possible history, the Melosh spallation model is used to estimate the size of the crater required to produce ejecta fragments of the required size with velocities $\geq $5 kilometers per second and to produce a total mass of solid ejecta consistent with the observed mass flux of SNC meteorites. Estimates of crater production rates on Mars are then used to evaluate the probability that sufficiently large craters have formed during the available time. The results indicate that the SNC meteorites were probably ejected from a very large crater (> 100 kilometers in diameter) about 200 million years ago, and that cosmic-ray exposure of the recovered meteorites was initiated after collisional fragmentation of the original ejecta in space at much later times (0.5 to 10 million years ago). |
doi_str_mv | 10.1126/science.237.4816.738 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_733193297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A5146504</galeid><jstor_id>1699202</jstor_id><sourcerecordid>A5146504</sourcerecordid><originalsourceid>FETCH-LOGICAL-a791t-6e91ee035575faa9dda016fe6da40295b3c357b9f892a4530f624b98c0b5894f3</originalsourceid><addsrcrecordid>eNqN01tv0zAYBmALgVgZ_IMJRVwwoZHi8-FyRFAmlfVig1vLSb-EVGmy2Y7E_v1ctVIHqqDyhSV_jy0fXiN0RvCUECo_haqFvoIpZWrKNZFTxfQzNCHYiNxQzJ6jCcZM5horcYJehbDCONUMe4lOiFKCCMkm6MPtL8jmzjeQFd5F8NnCt03bZ0Od3VwX2XeIMPg2QniNXtSuC_Bm15-iH1-_3Bbf8vlidlVcznOnDIm5BEMAMBNCido5s1w6TGQNcuk4pkaUrGJClabWhjouGK4l5aXRFS6FNrxmp-h8u-6dH-5HCNGu21BB17kehjFYxRgxjBqV5Pt_Siap1Fz-H1KumOAMJ_juL7gaRt-n41pKWNqs1jqhiy1qXAe27eshelc10IN33dBD3abhS0G4FJgn_fGATm0J67Y6wM__4ElE-B0bN4Zgr26uj5WLn8fKz7MjpZ7Nn8qLQ7Iaug4asCkRxeKp5ltd-SEED7W98-3a-QdLsN2k2e7SbFOa7SbN6Zk3N_129xxjuYblftIuvgmcbUHvgrN99MESoxXGkguB9-VViIPfT5cmfRDKHgGzfvuc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213530888</pqid></control><display><type>article</type><title>The Large Crater Origin of SNC Meteorites</title><source>Science Magazine</source><source>JSTOR Archive Collection A-Z Listing</source><source>NASA Technical Reports Server</source><creator>Vickery, A. M. ; Melosh, H. J.</creator><creatorcontrib>Vickery, A. M. ; Melosh, H. J.</creatorcontrib><description>A large body of evidence strongly suggests that the shergottite, nakhlite, and Chassigny (SNC) meteorites are from Mars. Various mechanisms for the ejection of large rocks at martian escape velocity (5 kilometers per second) have been investigated, but none has proved wholly satisfactory. This article examines a number of possible ejection and cosmic-ray exposure histories to determine which is most plausible. For each possible history, the Melosh spallation model is used to estimate the size of the crater required to produce ejecta fragments of the required size with velocities $\geq $5 kilometers per second and to produce a total mass of solid ejecta consistent with the observed mass flux of SNC meteorites. Estimates of crater production rates on Mars are then used to evaluate the probability that sufficiently large craters have formed during the available time. The results indicate that the SNC meteorites were probably ejected from a very large crater (> 100 kilometers in diameter) about 200 million years ago, and that cosmic-ray exposure of the recovered meteorites was initiated after collisional fragmentation of the original ejecta in space at much later times (0.5 to 10 million years ago).</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.237.4816.738</identifier><identifier>PMID: 17751563</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Legacy CDMS: The American Association for the Advancement of Science</publisher><subject>Cratering ; Ejecta ; Escape velocity ; Impact craters ; Impact velocity ; Lunar And Planetary Exploration ; Mars ; Mars (Planet) ; Meteorites ; Meteors & meteorites ; Nakhlites ; Natural history ; Origin ; Physics ; Planets ; Projectiles ; Shergottites ; SNC meteorites</subject><ispartof>Science (American Association for the Advancement of Science), 1987-08, Vol.237 (4816), p.738-743</ispartof><rights>Copyright 1987 The American Association for the Advancement of Science</rights><rights>COPYRIGHT 1987 American Association for the Advancement of Science</rights><rights>COPYRIGHT 1987 American Association for the Advancement of Science</rights><rights>Copyright American Association for the Advancement of Science Aug 14, 1987</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a791t-6e91ee035575faa9dda016fe6da40295b3c357b9f892a4530f624b98c0b5894f3</citedby><cites>FETCH-LOGICAL-a791t-6e91ee035575faa9dda016fe6da40295b3c357b9f892a4530f624b98c0b5894f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1699202$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1699202$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2884,2885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17751563$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vickery, A. M.</creatorcontrib><creatorcontrib>Melosh, H. J.</creatorcontrib><title>The Large Crater Origin of SNC Meteorites</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>A large body of evidence strongly suggests that the shergottite, nakhlite, and Chassigny (SNC) meteorites are from Mars. Various mechanisms for the ejection of large rocks at martian escape velocity (5 kilometers per second) have been investigated, but none has proved wholly satisfactory. This article examines a number of possible ejection and cosmic-ray exposure histories to determine which is most plausible. For each possible history, the Melosh spallation model is used to estimate the size of the crater required to produce ejecta fragments of the required size with velocities $\geq $5 kilometers per second and to produce a total mass of solid ejecta consistent with the observed mass flux of SNC meteorites. Estimates of crater production rates on Mars are then used to evaluate the probability that sufficiently large craters have formed during the available time. The results indicate that the SNC meteorites were probably ejected from a very large crater (> 100 kilometers in diameter) about 200 million years ago, and that cosmic-ray exposure of the recovered meteorites was initiated after collisional fragmentation of the original ejecta in space at much later times (0.5 to 10 million years ago).</description><subject>Cratering</subject><subject>Ejecta</subject><subject>Escape velocity</subject><subject>Impact craters</subject><subject>Impact velocity</subject><subject>Lunar And Planetary Exploration</subject><subject>Mars</subject><subject>Mars (Planet)</subject><subject>Meteorites</subject><subject>Meteors & meteorites</subject><subject>Nakhlites</subject><subject>Natural history</subject><subject>Origin</subject><subject>Physics</subject><subject>Planets</subject><subject>Projectiles</subject><subject>Shergottites</subject><subject>SNC meteorites</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNqN01tv0zAYBmALgVgZ_IMJRVwwoZHi8-FyRFAmlfVig1vLSb-EVGmy2Y7E_v1ctVIHqqDyhSV_jy0fXiN0RvCUECo_haqFvoIpZWrKNZFTxfQzNCHYiNxQzJ6jCcZM5horcYJehbDCONUMe4lOiFKCCMkm6MPtL8jmzjeQFd5F8NnCt03bZ0Od3VwX2XeIMPg2QniNXtSuC_Bm15-iH1-_3Bbf8vlidlVcznOnDIm5BEMAMBNCido5s1w6TGQNcuk4pkaUrGJClabWhjouGK4l5aXRFS6FNrxmp-h8u-6dH-5HCNGu21BB17kehjFYxRgxjBqV5Pt_Siap1Fz-H1KumOAMJ_juL7gaRt-n41pKWNqs1jqhiy1qXAe27eshelc10IN33dBD3abhS0G4FJgn_fGATm0J67Y6wM__4ElE-B0bN4Zgr26uj5WLn8fKz7MjpZ7Nn8qLQ7Iaug4asCkRxeKp5ltd-SEED7W98-3a-QdLsN2k2e7SbFOa7SbN6Zk3N_129xxjuYblftIuvgmcbUHvgrN99MESoxXGkguB9-VViIPfT5cmfRDKHgGzfvuc</recordid><startdate>19870814</startdate><enddate>19870814</enddate><creator>Vickery, A. M.</creator><creator>Melosh, H. J.</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science</general><scope>CYE</scope><scope>CYI</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19870814</creationdate><title>The Large Crater Origin of SNC Meteorites</title><author>Vickery, A. M. ; Melosh, H. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a791t-6e91ee035575faa9dda016fe6da40295b3c357b9f892a4530f624b98c0b5894f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Cratering</topic><topic>Ejecta</topic><topic>Escape velocity</topic><topic>Impact craters</topic><topic>Impact velocity</topic><topic>Lunar And Planetary Exploration</topic><topic>Mars</topic><topic>Mars (Planet)</topic><topic>Meteorites</topic><topic>Meteors & meteorites</topic><topic>Nakhlites</topic><topic>Natural history</topic><topic>Origin</topic><topic>Physics</topic><topic>Planets</topic><topic>Projectiles</topic><topic>Shergottites</topic><topic>SNC meteorites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vickery, A. M.</creatorcontrib><creatorcontrib>Melosh, H. J.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Biography</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vickery, A. M.</au><au>Melosh, H. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Large Crater Origin of SNC Meteorites</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1987-08-14</date><risdate>1987</risdate><volume>237</volume><issue>4816</issue><spage>738</spage><epage>743</epage><pages>738-743</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>A large body of evidence strongly suggests that the shergottite, nakhlite, and Chassigny (SNC) meteorites are from Mars. Various mechanisms for the ejection of large rocks at martian escape velocity (5 kilometers per second) have been investigated, but none has proved wholly satisfactory. This article examines a number of possible ejection and cosmic-ray exposure histories to determine which is most plausible. For each possible history, the Melosh spallation model is used to estimate the size of the crater required to produce ejecta fragments of the required size with velocities $\geq $5 kilometers per second and to produce a total mass of solid ejecta consistent with the observed mass flux of SNC meteorites. Estimates of crater production rates on Mars are then used to evaluate the probability that sufficiently large craters have formed during the available time. The results indicate that the SNC meteorites were probably ejected from a very large crater (> 100 kilometers in diameter) about 200 million years ago, and that cosmic-ray exposure of the recovered meteorites was initiated after collisional fragmentation of the original ejecta in space at much later times (0.5 to 10 million years ago).</abstract><cop>Legacy CDMS</cop><pub>The American Association for the Advancement of Science</pub><pmid>17751563</pmid><doi>10.1126/science.237.4816.738</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 1987-08, Vol.237 (4816), p.738-743 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_733193297 |
source | Science Magazine; JSTOR Archive Collection A-Z Listing; NASA Technical Reports Server |
subjects | Cratering Ejecta Escape velocity Impact craters Impact velocity Lunar And Planetary Exploration Mars Mars (Planet) Meteorites Meteors & meteorites Nakhlites Natural history Origin Physics Planets Projectiles Shergottites SNC meteorites |
title | The Large Crater Origin of SNC Meteorites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A58%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Large%20Crater%20Origin%20of%20SNC%20Meteorites&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Vickery,%20A.%20M.&rft.date=1987-08-14&rft.volume=237&rft.issue=4816&rft.spage=738&rft.epage=743&rft.pages=738-743&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.237.4816.738&rft_dat=%3Cgale_proqu%3EA5146504%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213530888&rft_id=info:pmid/17751563&rft_galeid=A5146504&rft_jstor_id=1699202&rfr_iscdi=true |