The Disposition of Pravastatin in a Rat Model of Streptozotocin-Induced Diabetes and Organic Anion Transporting Polypeptide 2 and Multidrug Resistance-Associated Protein 2 Expression in the Liver

The combination of diabetes and hyperlipidemia promotes the development of atherosclerosis. Therefore, it is important for diabetic patients to control blood fat. 3-Hydroxy-3-methylglutaryl enzyme A (HMG-CoA) reductase inhibitors (statins), like pravastatin, are frequently administered to diabetic p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological & Pharmaceutical Bulletin 2010/01/01, Vol.33(1), pp.153-156
Hauptverfasser: Hasegawa, Yoshitaka, Kishimoto, Shuichi, Shibatani, Naoki, Inotsume, Nobuo, Takeuchi, Yoshikazu, Fukushima, Shoji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 156
container_issue 1
container_start_page 153
container_title Biological & Pharmaceutical Bulletin
container_volume 33
creator Hasegawa, Yoshitaka
Kishimoto, Shuichi
Shibatani, Naoki
Inotsume, Nobuo
Takeuchi, Yoshikazu
Fukushima, Shoji
description The combination of diabetes and hyperlipidemia promotes the development of atherosclerosis. Therefore, it is important for diabetic patients to control blood fat. 3-Hydroxy-3-methylglutaryl enzyme A (HMG-CoA) reductase inhibitors (statins), like pravastatin, are frequently administered to diabetic patients for this purpose. Although the alterations of metabolic enzymes and transporters in the diabetic liver maybe change the disposition of pravastatin, the effect has not been fully investigated. In the present study, we investigated the disposition of pravastatin and the mRNA expression of transporters in the liver. Pravastatin (5 mg·kg−1 body weight) was administered intravenously to diabetic rats, and the pravastatin concentrations in the plasma, urine, and bile were measured by high-performance liquid chromatography. Changes in the mRNA expressions of multidrug resistance-associated protein 2 (MRP2) and organic anion transporting polypeptide 2 (OATP2) in the liver were also estimated using reverse transcriptase-polymerase chain reaction (RT-PCR). We found that the plasma pravastatin concentration was lower in the diabetic rat because the transportation of pravastatin into hepatocytes was promoted along with increased expression of OATP2. The biliary excretion ratio of pravastatin was significantly lower in the diabetic rat because the pravastatin transportation into bile was reduced along with the decreased expression of MRP2. To clarify these phenomena, the analysis of mRNA expression using real-time PCR and the measurement of the amount and the activity of proteins are necessary in future study.
doi_str_mv 10.1248/bpb.33.153
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733181636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733181636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c686t-fe1384294c852119fcc6de26e20f13544ac6c3794053cac68f9771b74227fcd33</originalsourceid><addsrcrecordid>eNpdkl1r1EAUhoModq3e-ANkwAtByDpf-bqSpbZa2NKlrtdhMjnZzpKdSWcmxfr3_GOemHYFIfPFeed5D_MmSd4yumRclp-aoVkKsWSZeJYsmJBFmnGWPU8WtGJlmrOsPElehbCnlBaUi5fJCadUZlWWL5Lf21sgX0wYXDDROEtcRzZe3asQVTSW4KfIjYrkyrXQT9Xv0cMQ3S8XnTY2vbTtqKFFhmogQiDKtuTa75Q1mqzshNx6ZdHAI29HNq5_GBBgWiD8r_hq7PHkxx25gWDQ12pIVyEgXkUkb7yLgH1wcv5z8BDCxMRzxM7X5h786-RFp_oAbx7X0-THxfn27Fu6vv56ebZapzov85h2wEQpeSV1ie_Dqk7rvAWeA6cdE5mUSudaFJWkmdC4L7uqKFhTSM6LTrdCnCYfZu7g3d0IIdYHEzT0vbLgxlAXQrCS5SJH5fv_lHs3eovN1UzKShQlLzJUfZxV2rsQPHT14M1B-Yea0XpKtsZkayFqTBbF7x6RY3OA9ih9ihIFF7MAq0ar3tneWPhnrEPRGNc7vIF4SoWgrKYCB-KnKcc_J-eT0-cZtMcsdnB0Uhig7uHY1DxNl58q-lb5Gqz4Ax7Czcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449378275</pqid></control><display><type>article</type><title>The Disposition of Pravastatin in a Rat Model of Streptozotocin-Induced Diabetes and Organic Anion Transporting Polypeptide 2 and Multidrug Resistance-Associated Protein 2 Expression in the Liver</title><source>J-STAGE Free</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Hasegawa, Yoshitaka ; Kishimoto, Shuichi ; Shibatani, Naoki ; Inotsume, Nobuo ; Takeuchi, Yoshikazu ; Fukushima, Shoji</creator><creatorcontrib>Hasegawa, Yoshitaka ; Kishimoto, Shuichi ; Shibatani, Naoki ; Inotsume, Nobuo ; Takeuchi, Yoshikazu ; Fukushima, Shoji ; bCooperative Research Center of Life Science ; Faculty of Pharmaceutical Sciences ; aLaboratory of Clinical Pharmaceutics ; cDivision of Clinical Pharmaceutics ; Kobe Gakuin University ; Hokkaido Pharmaceutical University School of Pharmacy</creatorcontrib><description>The combination of diabetes and hyperlipidemia promotes the development of atherosclerosis. Therefore, it is important for diabetic patients to control blood fat. 3-Hydroxy-3-methylglutaryl enzyme A (HMG-CoA) reductase inhibitors (statins), like pravastatin, are frequently administered to diabetic patients for this purpose. Although the alterations of metabolic enzymes and transporters in the diabetic liver maybe change the disposition of pravastatin, the effect has not been fully investigated. In the present study, we investigated the disposition of pravastatin and the mRNA expression of transporters in the liver. Pravastatin (5 mg·kg−1 body weight) was administered intravenously to diabetic rats, and the pravastatin concentrations in the plasma, urine, and bile were measured by high-performance liquid chromatography. Changes in the mRNA expressions of multidrug resistance-associated protein 2 (MRP2) and organic anion transporting polypeptide 2 (OATP2) in the liver were also estimated using reverse transcriptase-polymerase chain reaction (RT-PCR). We found that the plasma pravastatin concentration was lower in the diabetic rat because the transportation of pravastatin into hepatocytes was promoted along with increased expression of OATP2. The biliary excretion ratio of pravastatin was significantly lower in the diabetic rat because the pravastatin transportation into bile was reduced along with the decreased expression of MRP2. To clarify these phenomena, the analysis of mRNA expression using real-time PCR and the measurement of the amount and the activity of proteins are necessary in future study.</description><identifier>ISSN: 0918-6158</identifier><identifier>EISSN: 1347-5215</identifier><identifier>DOI: 10.1248/bpb.33.153</identifier><identifier>PMID: 20045956</identifier><language>eng</language><publisher>Japan: The Pharmaceutical Society of Japan</publisher><subject>Animals ; Area Under Curve ; Bile - metabolism ; Biological Transport ; Chromatography, High Pressure Liquid ; diabetes ; Diabetes Mellitus, Experimental - metabolism ; disposition ; Gene Expression ; Liver - metabolism ; Male ; multidrug resistance-associated protein 2 ; Multidrug Resistance-Associated Proteins - genetics ; Multidrug Resistance-Associated Proteins - metabolism ; Organic Anion Transporters - genetics ; Organic Anion Transporters - metabolism ; organic anion transporting polypeptide 2 ; pravastatin ; Pravastatin - administration &amp; dosage ; Pravastatin - blood ; Pravastatin - pharmacokinetics ; Rats ; Rats, Inbred Strains ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - metabolism</subject><ispartof>Biological and Pharmaceutical Bulletin, 2010/01/01, Vol.33(1), pp.153-156</ispartof><rights>2010 The Pharmaceutical Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c686t-fe1384294c852119fcc6de26e20f13544ac6c3794053cac68f9771b74227fcd33</citedby><cites>FETCH-LOGICAL-c686t-fe1384294c852119fcc6de26e20f13544ac6c3794053cac68f9771b74227fcd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20045956$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hasegawa, Yoshitaka</creatorcontrib><creatorcontrib>Kishimoto, Shuichi</creatorcontrib><creatorcontrib>Shibatani, Naoki</creatorcontrib><creatorcontrib>Inotsume, Nobuo</creatorcontrib><creatorcontrib>Takeuchi, Yoshikazu</creatorcontrib><creatorcontrib>Fukushima, Shoji</creatorcontrib><creatorcontrib>bCooperative Research Center of Life Science</creatorcontrib><creatorcontrib>Faculty of Pharmaceutical Sciences</creatorcontrib><creatorcontrib>aLaboratory of Clinical Pharmaceutics</creatorcontrib><creatorcontrib>cDivision of Clinical Pharmaceutics</creatorcontrib><creatorcontrib>Kobe Gakuin University</creatorcontrib><creatorcontrib>Hokkaido Pharmaceutical University School of Pharmacy</creatorcontrib><title>The Disposition of Pravastatin in a Rat Model of Streptozotocin-Induced Diabetes and Organic Anion Transporting Polypeptide 2 and Multidrug Resistance-Associated Protein 2 Expression in the Liver</title><title>Biological &amp; Pharmaceutical Bulletin</title><addtitle>Biol Pharm Bull</addtitle><description>The combination of diabetes and hyperlipidemia promotes the development of atherosclerosis. Therefore, it is important for diabetic patients to control blood fat. 3-Hydroxy-3-methylglutaryl enzyme A (HMG-CoA) reductase inhibitors (statins), like pravastatin, are frequently administered to diabetic patients for this purpose. Although the alterations of metabolic enzymes and transporters in the diabetic liver maybe change the disposition of pravastatin, the effect has not been fully investigated. In the present study, we investigated the disposition of pravastatin and the mRNA expression of transporters in the liver. Pravastatin (5 mg·kg−1 body weight) was administered intravenously to diabetic rats, and the pravastatin concentrations in the plasma, urine, and bile were measured by high-performance liquid chromatography. Changes in the mRNA expressions of multidrug resistance-associated protein 2 (MRP2) and organic anion transporting polypeptide 2 (OATP2) in the liver were also estimated using reverse transcriptase-polymerase chain reaction (RT-PCR). We found that the plasma pravastatin concentration was lower in the diabetic rat because the transportation of pravastatin into hepatocytes was promoted along with increased expression of OATP2. The biliary excretion ratio of pravastatin was significantly lower in the diabetic rat because the pravastatin transportation into bile was reduced along with the decreased expression of MRP2. To clarify these phenomena, the analysis of mRNA expression using real-time PCR and the measurement of the amount and the activity of proteins are necessary in future study.</description><subject>Animals</subject><subject>Area Under Curve</subject><subject>Bile - metabolism</subject><subject>Biological Transport</subject><subject>Chromatography, High Pressure Liquid</subject><subject>diabetes</subject><subject>Diabetes Mellitus, Experimental - metabolism</subject><subject>disposition</subject><subject>Gene Expression</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>multidrug resistance-associated protein 2</subject><subject>Multidrug Resistance-Associated Proteins - genetics</subject><subject>Multidrug Resistance-Associated Proteins - metabolism</subject><subject>Organic Anion Transporters - genetics</subject><subject>Organic Anion Transporters - metabolism</subject><subject>organic anion transporting polypeptide 2</subject><subject>pravastatin</subject><subject>Pravastatin - administration &amp; dosage</subject><subject>Pravastatin - blood</subject><subject>Pravastatin - pharmacokinetics</subject><subject>Rats</subject><subject>Rats, Inbred Strains</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - metabolism</subject><issn>0918-6158</issn><issn>1347-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkl1r1EAUhoModq3e-ANkwAtByDpf-bqSpbZa2NKlrtdhMjnZzpKdSWcmxfr3_GOemHYFIfPFeed5D_MmSd4yumRclp-aoVkKsWSZeJYsmJBFmnGWPU8WtGJlmrOsPElehbCnlBaUi5fJCadUZlWWL5Lf21sgX0wYXDDROEtcRzZe3asQVTSW4KfIjYrkyrXQT9Xv0cMQ3S8XnTY2vbTtqKFFhmogQiDKtuTa75Q1mqzshNx6ZdHAI29HNq5_GBBgWiD8r_hq7PHkxx25gWDQ12pIVyEgXkUkb7yLgH1wcv5z8BDCxMRzxM7X5h786-RFp_oAbx7X0-THxfn27Fu6vv56ebZapzov85h2wEQpeSV1ie_Dqk7rvAWeA6cdE5mUSudaFJWkmdC4L7uqKFhTSM6LTrdCnCYfZu7g3d0IIdYHEzT0vbLgxlAXQrCS5SJH5fv_lHs3eovN1UzKShQlLzJUfZxV2rsQPHT14M1B-Yea0XpKtsZkayFqTBbF7x6RY3OA9ih9ihIFF7MAq0ar3tneWPhnrEPRGNc7vIF4SoWgrKYCB-KnKcc_J-eT0-cZtMcsdnB0Uhig7uHY1DxNl58q-lb5Gqz4Ax7Czcg</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Hasegawa, Yoshitaka</creator><creator>Kishimoto, Shuichi</creator><creator>Shibatani, Naoki</creator><creator>Inotsume, Nobuo</creator><creator>Takeuchi, Yoshikazu</creator><creator>Fukushima, Shoji</creator><general>The Pharmaceutical Society of Japan</general><general>Pharmaceutical Society of Japan</general><general>Japan Science and Technology Agency</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20100101</creationdate><title>The Disposition of Pravastatin in a Rat Model of Streptozotocin-Induced Diabetes and Organic Anion Transporting Polypeptide 2 and Multidrug Resistance-Associated Protein 2 Expression in the Liver</title><author>Hasegawa, Yoshitaka ; Kishimoto, Shuichi ; Shibatani, Naoki ; Inotsume, Nobuo ; Takeuchi, Yoshikazu ; Fukushima, Shoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c686t-fe1384294c852119fcc6de26e20f13544ac6c3794053cac68f9771b74227fcd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Area Under Curve</topic><topic>Bile - metabolism</topic><topic>Biological Transport</topic><topic>Chromatography, High Pressure Liquid</topic><topic>diabetes</topic><topic>Diabetes Mellitus, Experimental - metabolism</topic><topic>disposition</topic><topic>Gene Expression</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>multidrug resistance-associated protein 2</topic><topic>Multidrug Resistance-Associated Proteins - genetics</topic><topic>Multidrug Resistance-Associated Proteins - metabolism</topic><topic>Organic Anion Transporters - genetics</topic><topic>Organic Anion Transporters - metabolism</topic><topic>organic anion transporting polypeptide 2</topic><topic>pravastatin</topic><topic>Pravastatin - administration &amp; dosage</topic><topic>Pravastatin - blood</topic><topic>Pravastatin - pharmacokinetics</topic><topic>Rats</topic><topic>Rats, Inbred Strains</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasegawa, Yoshitaka</creatorcontrib><creatorcontrib>Kishimoto, Shuichi</creatorcontrib><creatorcontrib>Shibatani, Naoki</creatorcontrib><creatorcontrib>Inotsume, Nobuo</creatorcontrib><creatorcontrib>Takeuchi, Yoshikazu</creatorcontrib><creatorcontrib>Fukushima, Shoji</creatorcontrib><creatorcontrib>bCooperative Research Center of Life Science</creatorcontrib><creatorcontrib>Faculty of Pharmaceutical Sciences</creatorcontrib><creatorcontrib>aLaboratory of Clinical Pharmaceutics</creatorcontrib><creatorcontrib>cDivision of Clinical Pharmaceutics</creatorcontrib><creatorcontrib>Kobe Gakuin University</creatorcontrib><creatorcontrib>Hokkaido Pharmaceutical University School of Pharmacy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biological &amp; Pharmaceutical Bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasegawa, Yoshitaka</au><au>Kishimoto, Shuichi</au><au>Shibatani, Naoki</au><au>Inotsume, Nobuo</au><au>Takeuchi, Yoshikazu</au><au>Fukushima, Shoji</au><aucorp>bCooperative Research Center of Life Science</aucorp><aucorp>Faculty of Pharmaceutical Sciences</aucorp><aucorp>aLaboratory of Clinical Pharmaceutics</aucorp><aucorp>cDivision of Clinical Pharmaceutics</aucorp><aucorp>Kobe Gakuin University</aucorp><aucorp>Hokkaido Pharmaceutical University School of Pharmacy</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Disposition of Pravastatin in a Rat Model of Streptozotocin-Induced Diabetes and Organic Anion Transporting Polypeptide 2 and Multidrug Resistance-Associated Protein 2 Expression in the Liver</atitle><jtitle>Biological &amp; Pharmaceutical Bulletin</jtitle><addtitle>Biol Pharm Bull</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>33</volume><issue>1</issue><spage>153</spage><epage>156</epage><pages>153-156</pages><issn>0918-6158</issn><eissn>1347-5215</eissn><abstract>The combination of diabetes and hyperlipidemia promotes the development of atherosclerosis. Therefore, it is important for diabetic patients to control blood fat. 3-Hydroxy-3-methylglutaryl enzyme A (HMG-CoA) reductase inhibitors (statins), like pravastatin, are frequently administered to diabetic patients for this purpose. Although the alterations of metabolic enzymes and transporters in the diabetic liver maybe change the disposition of pravastatin, the effect has not been fully investigated. In the present study, we investigated the disposition of pravastatin and the mRNA expression of transporters in the liver. Pravastatin (5 mg·kg−1 body weight) was administered intravenously to diabetic rats, and the pravastatin concentrations in the plasma, urine, and bile were measured by high-performance liquid chromatography. Changes in the mRNA expressions of multidrug resistance-associated protein 2 (MRP2) and organic anion transporting polypeptide 2 (OATP2) in the liver were also estimated using reverse transcriptase-polymerase chain reaction (RT-PCR). We found that the plasma pravastatin concentration was lower in the diabetic rat because the transportation of pravastatin into hepatocytes was promoted along with increased expression of OATP2. The biliary excretion ratio of pravastatin was significantly lower in the diabetic rat because the pravastatin transportation into bile was reduced along with the decreased expression of MRP2. To clarify these phenomena, the analysis of mRNA expression using real-time PCR and the measurement of the amount and the activity of proteins are necessary in future study.</abstract><cop>Japan</cop><pub>The Pharmaceutical Society of Japan</pub><pmid>20045956</pmid><doi>10.1248/bpb.33.153</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0918-6158
ispartof Biological and Pharmaceutical Bulletin, 2010/01/01, Vol.33(1), pp.153-156
issn 0918-6158
1347-5215
language eng
recordid cdi_proquest_miscellaneous_733181636
source J-STAGE Free; MEDLINE; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Animals
Area Under Curve
Bile - metabolism
Biological Transport
Chromatography, High Pressure Liquid
diabetes
Diabetes Mellitus, Experimental - metabolism
disposition
Gene Expression
Liver - metabolism
Male
multidrug resistance-associated protein 2
Multidrug Resistance-Associated Proteins - genetics
Multidrug Resistance-Associated Proteins - metabolism
Organic Anion Transporters - genetics
Organic Anion Transporters - metabolism
organic anion transporting polypeptide 2
pravastatin
Pravastatin - administration & dosage
Pravastatin - blood
Pravastatin - pharmacokinetics
Rats
Rats, Inbred Strains
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - metabolism
title The Disposition of Pravastatin in a Rat Model of Streptozotocin-Induced Diabetes and Organic Anion Transporting Polypeptide 2 and Multidrug Resistance-Associated Protein 2 Expression in the Liver
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Disposition%20of%20Pravastatin%20in%20a%20Rat%20Model%20of%20Streptozotocin-Induced%20Diabetes%20and%20Organic%20Anion%20Transporting%20Polypeptide%202%20and%20Multidrug%20Resistance-Associated%20Protein%202%20Expression%20in%20the%20Liver&rft.jtitle=Biological%20&%20Pharmaceutical%20Bulletin&rft.au=Hasegawa,%20Yoshitaka&rft.aucorp=bCooperative%20Research%20Center%20of%20Life%20Science&rft.date=2010-01-01&rft.volume=33&rft.issue=1&rft.spage=153&rft.epage=156&rft.pages=153-156&rft.issn=0918-6158&rft.eissn=1347-5215&rft_id=info:doi/10.1248/bpb.33.153&rft_dat=%3Cproquest_cross%3E733181636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449378275&rft_id=info:pmid/20045956&rfr_iscdi=true