Evaluation of Different Dielectric Barrier Discharge Plasma Configurations As an Alternative Technology for Green C1 Chemistry in the Carbon Dioxide Reforming of Methane and the Direct Decomposition of Methanol

Carbon dioxide reforming of methane and direct decomposition of methanol have been investigated using dielectric barrier discharges (DBD) at atmospheric pressure and reduced working temperatures. Two different plasma reactor configurations are compared and especial attention is paid to the influence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2010-03, Vol.114 (11), p.4009-4016
Hauptverfasser: Rico, Víctor J, Hueso, José L, Cotrino, José, González-Elipe, Agustín R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4016
container_issue 11
container_start_page 4009
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 114
creator Rico, Víctor J
Hueso, José L
Cotrino, José
González-Elipe, Agustín R
description Carbon dioxide reforming of methane and direct decomposition of methanol have been investigated using dielectric barrier discharges (DBD) at atmospheric pressure and reduced working temperatures. Two different plasma reactor configurations are compared and especial attention is paid to the influence of the surface roughness of the electrodes on the conversion yields in the first plasma device. The influence of different filling gap dielectric materials (i.e., Al2O3 or BaTiO3) in the second packed configuration has been also evaluated. Depending on the experimental conditions of applied voltage, residence time of reactants, feed ratios, or reactor configuration, different conversion yields are achieved ranging from 20 to 80% in the case of methane and 7−45% for the carbon dioxide. The direct decomposition of methanol reaches 60−100% under similar experimental conditions. Interestingly, the selectivity toward the production of hydrogen and carbon monoxide is kept almost constant under all the experimental conditions, and the formation of longer hydrocarbon chains or coke as a byproduct is not detected. The maximum efficiency yields are observed for the packed-bed reactor configuration containing alumina for both reaction processes (∼1 mol H2 per kilowatt hour for dry reforming of methane and ∼4.5 mol H2 per kilowatt hour for direct decomposition of methanol).
doi_str_mv 10.1021/jp100346q
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_733148825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733148825</sourcerecordid><originalsourceid>FETCH-LOGICAL-a221t-77887a578507e2237a39fc5daba3b8fcc0f0e408f082094e8d1983fc0dce7cde3</originalsourceid><addsrcrecordid>eNo9kc9u1DAQhy0Eon_gwAsgXxCnwNhOGue4ZEuLVARC5Rx5nfHGK8fe2k7FviZPhNttOc1o9M3os3-EvGPwiQFnn3d7BiDqi7sX5JQ1HKqGs-Zl6UF2VXMhuhNyltIOAJjg9WtywoHJWvDulPy9vFduUdkGT4Oha2sMRvS5dOhQ52g1_aJitBjLKOlJxS3Sn06lWdE-eGO3S3xcT3SVqPJ05TJGX0b3SG9RTz64sD1QEyK9ioie9oz2E8425Xig1tM8Ie1V3BSDtQ1_7Ij0FxZ8tn774PQd86Q8ltvjI7u2sYjRNeow70Oyz-5HLrg35JVRLuHbp3pOfn-9vO2vq5sfV9_61U2lOGe5alspW9W0soEWORetEp3Rzag2Smyk0RoMYA3SgOTQ1ShH1klhNIwaWz2iOCcfj3f3MdwtmPJQ3qTRuSIbljS0QrBaSt4U8v0TuWxmHId9tLOKh-E5hgJ8OAJKp2EXlvJ_Lg0Mhod4h__xin8UOZjP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733148825</pqid></control><display><type>article</type><title>Evaluation of Different Dielectric Barrier Discharge Plasma Configurations As an Alternative Technology for Green C1 Chemistry in the Carbon Dioxide Reforming of Methane and the Direct Decomposition of Methanol</title><source>American Chemical Society Journals</source><creator>Rico, Víctor J ; Hueso, José L ; Cotrino, José ; González-Elipe, Agustín R</creator><creatorcontrib>Rico, Víctor J ; Hueso, José L ; Cotrino, José ; González-Elipe, Agustín R</creatorcontrib><description>Carbon dioxide reforming of methane and direct decomposition of methanol have been investigated using dielectric barrier discharges (DBD) at atmospheric pressure and reduced working temperatures. Two different plasma reactor configurations are compared and especial attention is paid to the influence of the surface roughness of the electrodes on the conversion yields in the first plasma device. The influence of different filling gap dielectric materials (i.e., Al2O3 or BaTiO3) in the second packed configuration has been also evaluated. Depending on the experimental conditions of applied voltage, residence time of reactants, feed ratios, or reactor configuration, different conversion yields are achieved ranging from 20 to 80% in the case of methane and 7−45% for the carbon dioxide. The direct decomposition of methanol reaches 60−100% under similar experimental conditions. Interestingly, the selectivity toward the production of hydrogen and carbon monoxide is kept almost constant under all the experimental conditions, and the formation of longer hydrocarbon chains or coke as a byproduct is not detected. The maximum efficiency yields are observed for the packed-bed reactor configuration containing alumina for both reaction processes (∼1 mol H2 per kilowatt hour for dry reforming of methane and ∼4.5 mol H2 per kilowatt hour for direct decomposition of methanol).</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp100346q</identifier><identifier>PMID: 20184329</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2010-03, Vol.114 (11), p.4009-4016</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp100346q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp100346q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20184329$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rico, Víctor J</creatorcontrib><creatorcontrib>Hueso, José L</creatorcontrib><creatorcontrib>Cotrino, José</creatorcontrib><creatorcontrib>González-Elipe, Agustín R</creatorcontrib><title>Evaluation of Different Dielectric Barrier Discharge Plasma Configurations As an Alternative Technology for Green C1 Chemistry in the Carbon Dioxide Reforming of Methane and the Direct Decomposition of Methanol</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Carbon dioxide reforming of methane and direct decomposition of methanol have been investigated using dielectric barrier discharges (DBD) at atmospheric pressure and reduced working temperatures. Two different plasma reactor configurations are compared and especial attention is paid to the influence of the surface roughness of the electrodes on the conversion yields in the first plasma device. The influence of different filling gap dielectric materials (i.e., Al2O3 or BaTiO3) in the second packed configuration has been also evaluated. Depending on the experimental conditions of applied voltage, residence time of reactants, feed ratios, or reactor configuration, different conversion yields are achieved ranging from 20 to 80% in the case of methane and 7−45% for the carbon dioxide. The direct decomposition of methanol reaches 60−100% under similar experimental conditions. Interestingly, the selectivity toward the production of hydrogen and carbon monoxide is kept almost constant under all the experimental conditions, and the formation of longer hydrocarbon chains or coke as a byproduct is not detected. The maximum efficiency yields are observed for the packed-bed reactor configuration containing alumina for both reaction processes (∼1 mol H2 per kilowatt hour for dry reforming of methane and ∼4.5 mol H2 per kilowatt hour for direct decomposition of methanol).</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kc9u1DAQhy0Eon_gwAsgXxCnwNhOGue4ZEuLVARC5Rx5nfHGK8fe2k7FviZPhNttOc1o9M3os3-EvGPwiQFnn3d7BiDqi7sX5JQ1HKqGs-Zl6UF2VXMhuhNyltIOAJjg9WtywoHJWvDulPy9vFduUdkGT4Oha2sMRvS5dOhQ52g1_aJitBjLKOlJxS3Sn06lWdE-eGO3S3xcT3SVqPJ05TJGX0b3SG9RTz64sD1QEyK9ioie9oz2E8425Xig1tM8Ie1V3BSDtQ1_7Ij0FxZ8tn774PQd86Q8ltvjI7u2sYjRNeow70Oyz-5HLrg35JVRLuHbp3pOfn-9vO2vq5sfV9_61U2lOGe5alspW9W0soEWORetEp3Rzag2Smyk0RoMYA3SgOTQ1ShH1klhNIwaWz2iOCcfj3f3MdwtmPJQ3qTRuSIbljS0QrBaSt4U8v0TuWxmHId9tLOKh-E5hgJ8OAJKp2EXlvJ_Lg0Mhod4h__xin8UOZjP</recordid><startdate>20100325</startdate><enddate>20100325</enddate><creator>Rico, Víctor J</creator><creator>Hueso, José L</creator><creator>Cotrino, José</creator><creator>González-Elipe, Agustín R</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20100325</creationdate><title>Evaluation of Different Dielectric Barrier Discharge Plasma Configurations As an Alternative Technology for Green C1 Chemistry in the Carbon Dioxide Reforming of Methane and the Direct Decomposition of Methanol</title><author>Rico, Víctor J ; Hueso, José L ; Cotrino, José ; González-Elipe, Agustín R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a221t-77887a578507e2237a39fc5daba3b8fcc0f0e408f082094e8d1983fc0dce7cde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rico, Víctor J</creatorcontrib><creatorcontrib>Hueso, José L</creatorcontrib><creatorcontrib>Cotrino, José</creatorcontrib><creatorcontrib>González-Elipe, Agustín R</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rico, Víctor J</au><au>Hueso, José L</au><au>Cotrino, José</au><au>González-Elipe, Agustín R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Different Dielectric Barrier Discharge Plasma Configurations As an Alternative Technology for Green C1 Chemistry in the Carbon Dioxide Reforming of Methane and the Direct Decomposition of Methanol</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2010-03-25</date><risdate>2010</risdate><volume>114</volume><issue>11</issue><spage>4009</spage><epage>4016</epage><pages>4009-4016</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Carbon dioxide reforming of methane and direct decomposition of methanol have been investigated using dielectric barrier discharges (DBD) at atmospheric pressure and reduced working temperatures. Two different plasma reactor configurations are compared and especial attention is paid to the influence of the surface roughness of the electrodes on the conversion yields in the first plasma device. The influence of different filling gap dielectric materials (i.e., Al2O3 or BaTiO3) in the second packed configuration has been also evaluated. Depending on the experimental conditions of applied voltage, residence time of reactants, feed ratios, or reactor configuration, different conversion yields are achieved ranging from 20 to 80% in the case of methane and 7−45% for the carbon dioxide. The direct decomposition of methanol reaches 60−100% under similar experimental conditions. Interestingly, the selectivity toward the production of hydrogen and carbon monoxide is kept almost constant under all the experimental conditions, and the formation of longer hydrocarbon chains or coke as a byproduct is not detected. The maximum efficiency yields are observed for the packed-bed reactor configuration containing alumina for both reaction processes (∼1 mol H2 per kilowatt hour for dry reforming of methane and ∼4.5 mol H2 per kilowatt hour for direct decomposition of methanol).</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>20184329</pmid><doi>10.1021/jp100346q</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2010-03, Vol.114 (11), p.4009-4016
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_733148825
source American Chemical Society Journals
title Evaluation of Different Dielectric Barrier Discharge Plasma Configurations As an Alternative Technology for Green C1 Chemistry in the Carbon Dioxide Reforming of Methane and the Direct Decomposition of Methanol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Different%20Dielectric%20Barrier%20Discharge%20Plasma%20Configurations%20As%20an%20Alternative%20Technology%20for%20Green%20C1%20Chemistry%20in%20the%20Carbon%20Dioxide%20Reforming%20of%20Methane%20and%20the%20Direct%20Decomposition%20of%20Methanol&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Rico,%20Vi%CC%81ctor%20J&rft.date=2010-03-25&rft.volume=114&rft.issue=11&rft.spage=4009&rft.epage=4016&rft.pages=4009-4016&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp100346q&rft_dat=%3Cproquest_pubme%3E733148825%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733148825&rft_id=info:pmid/20184329&rfr_iscdi=true