Solventless visible light-curable coating: I. Critical formulation and processing parameters
Film coating is generally accomplished by spraying polymers dissolved in solvents onto a cascading bed of tablets. The limitations associated with the use of solvents (both aqueous and organic) can be overcome by the use of solventless coating technologies. In this proposed solventless photocurable...
Gespeichert in:
Veröffentlicht in: | International journal of pharmaceutics 2010-06, Vol.393 (1), p.32-40 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40 |
---|---|
container_issue | 1 |
container_start_page | 32 |
container_title | International journal of pharmaceutics |
container_volume | 393 |
creator | Bose, Sagarika Bogner, Robin H. |
description | Film coating is generally accomplished by spraying polymers dissolved in solvents onto a cascading bed of tablets. The limitations associated with the use of solvents (both aqueous and organic) can be overcome by the use of solventless coating technologies. In this proposed solventless photocurable film coating system, each layer of coating onto the pellets (non-pareil beads) was formed using liquid photocurable monomer, powdered pore-forming agents, photosensitizers and photoinitiators in a mini-coating pan and later cured by visible light. Yield, coating efficiency, variation in color, diameter and roundness were determined for each batch to evaluate process efficiency and coating quality. It was found that the ratio (S/L ratio) of the amount of solid (S) pore-forming agent to volume of liquid (L) monomer, particle size and type of the pore-forming agent, concentration of initiator, and total exposure (light intensity
×
exposure time) of light were critical formulation and processing parameters for the process. Using lactose as a pore-forming agent, an optimum ratio of pore-forming agent to photocurable polymer was 1.8–3.0 to achieve good process efficiency and uniformity. The ratio was sensitive to particle size and type of pore-forming agent. |
doi_str_mv | 10.1016/j.ijpharm.2010.01.041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733135943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378517310000943</els_id><sourcerecordid>733135943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-33b931a7f2e0d27c0ae60a0d4ebc23c5aecef31aafe91a7a9dea2f31a0996d53</originalsourceid><addsrcrecordid>eNqFkE2L2zAQhkVp6WbT_oQWX0pPdkcef8R7KUvYj0Cgh81xQUzkcaIg21nJDvTfVybZ7XFPQqPnHb08QnyTkEiQxa9DYg7HPbk2SSHMQCaQyQ9iJhclxpiVxUcxAywXcS5LvBLX3h8AoEglfhZXIYILiXImnp96e-JusOx9dDLebC1H1uz2Q6xHR9NN9zSYbncTrZJo6cxgNNmo6V072vDQdxF1dXR0vQ4rAhcdyVHLAzv_RXxqyHr-ejnnYnN_t1k-xus_D6vl7TrWWOZDjLitUFLZpAx1WmogLoCgznirU9Q5seYmANRwFTCqaqZ0GkBVFXWOc_HzvDaUeBnZD6o1XrO11HE_elUiSsyrDAOZn0nteu8dN-roTEvur5KgJq3qoC5a1aRVgVRBa8h9v_wwbluu31KvHgPw4wKQD3oaR502_j-XViCzairw-8xx0HEy7JTXhjvNtXGsB1X35p0q_wBcR5q0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733135943</pqid></control><display><type>article</type><title>Solventless visible light-curable coating: I. Critical formulation and processing parameters</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Bose, Sagarika ; Bogner, Robin H.</creator><creatorcontrib>Bose, Sagarika ; Bogner, Robin H.</creatorcontrib><description>Film coating is generally accomplished by spraying polymers dissolved in solvents onto a cascading bed of tablets. The limitations associated with the use of solvents (both aqueous and organic) can be overcome by the use of solventless coating technologies. In this proposed solventless photocurable film coating system, each layer of coating onto the pellets (non-pareil beads) was formed using liquid photocurable monomer, powdered pore-forming agents, photosensitizers and photoinitiators in a mini-coating pan and later cured by visible light. Yield, coating efficiency, variation in color, diameter and roundness were determined for each batch to evaluate process efficiency and coating quality. It was found that the ratio (S/L ratio) of the amount of solid (S) pore-forming agent to volume of liquid (L) monomer, particle size and type of the pore-forming agent, concentration of initiator, and total exposure (light intensity
×
exposure time) of light were critical formulation and processing parameters for the process. Using lactose as a pore-forming agent, an optimum ratio of pore-forming agent to photocurable polymer was 1.8–3.0 to achieve good process efficiency and uniformity. The ratio was sensitive to particle size and type of pore-forming agent.</description><identifier>ISSN: 0378-5173</identifier><identifier>EISSN: 1873-3476</identifier><identifier>DOI: 10.1016/j.ijpharm.2010.01.041</identifier><identifier>PMID: 20138131</identifier><identifier>CODEN: IJPHDE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Biological and medical sciences ; Bisphenol A-Glycidyl Methacrylate - chemistry ; Bisphenol A-Glycidyl Methacrylate - radiation effects ; Chemistry, Pharmaceutical ; Coating ; Color ; Dosage Forms ; Drug Compounding ; Formulation variables ; General pharmacology ; Hardness ; Lactose - chemistry ; Light ; Medical sciences ; Methacrylates - chemistry ; Models, Chemical ; Particle Size ; Pellets ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Photochemical Processes ; Photosensitizing Agents - chemistry ; Polyethylene Glycols - chemistry ; Polyethylene Glycols - radiation effects ; Polymer ; Polymethacrylic Acids - chemistry ; Polymethacrylic Acids - radiation effects ; Porosity ; Processing parameters ; Starch - analogs & derivatives ; Starch - chemistry ; Surface Properties ; Technology, Pharmaceutical - methods ; Terpenes - chemistry ; Time Factors ; Viscosity</subject><ispartof>International journal of pharmaceutics, 2010-06, Vol.393 (1), p.32-40</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-33b931a7f2e0d27c0ae60a0d4ebc23c5aecef31aafe91a7a9dea2f31a0996d53</citedby><cites>FETCH-LOGICAL-c375t-33b931a7f2e0d27c0ae60a0d4ebc23c5aecef31aafe91a7a9dea2f31a0996d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijpharm.2010.01.041$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22901493$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20138131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bose, Sagarika</creatorcontrib><creatorcontrib>Bogner, Robin H.</creatorcontrib><title>Solventless visible light-curable coating: I. Critical formulation and processing parameters</title><title>International journal of pharmaceutics</title><addtitle>Int J Pharm</addtitle><description>Film coating is generally accomplished by spraying polymers dissolved in solvents onto a cascading bed of tablets. The limitations associated with the use of solvents (both aqueous and organic) can be overcome by the use of solventless coating technologies. In this proposed solventless photocurable film coating system, each layer of coating onto the pellets (non-pareil beads) was formed using liquid photocurable monomer, powdered pore-forming agents, photosensitizers and photoinitiators in a mini-coating pan and later cured by visible light. Yield, coating efficiency, variation in color, diameter and roundness were determined for each batch to evaluate process efficiency and coating quality. It was found that the ratio (S/L ratio) of the amount of solid (S) pore-forming agent to volume of liquid (L) monomer, particle size and type of the pore-forming agent, concentration of initiator, and total exposure (light intensity
×
exposure time) of light were critical formulation and processing parameters for the process. Using lactose as a pore-forming agent, an optimum ratio of pore-forming agent to photocurable polymer was 1.8–3.0 to achieve good process efficiency and uniformity. The ratio was sensitive to particle size and type of pore-forming agent.</description><subject>Biological and medical sciences</subject><subject>Bisphenol A-Glycidyl Methacrylate - chemistry</subject><subject>Bisphenol A-Glycidyl Methacrylate - radiation effects</subject><subject>Chemistry, Pharmaceutical</subject><subject>Coating</subject><subject>Color</subject><subject>Dosage Forms</subject><subject>Drug Compounding</subject><subject>Formulation variables</subject><subject>General pharmacology</subject><subject>Hardness</subject><subject>Lactose - chemistry</subject><subject>Light</subject><subject>Medical sciences</subject><subject>Methacrylates - chemistry</subject><subject>Models, Chemical</subject><subject>Particle Size</subject><subject>Pellets</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Photochemical Processes</subject><subject>Photosensitizing Agents - chemistry</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polyethylene Glycols - radiation effects</subject><subject>Polymer</subject><subject>Polymethacrylic Acids - chemistry</subject><subject>Polymethacrylic Acids - radiation effects</subject><subject>Porosity</subject><subject>Processing parameters</subject><subject>Starch - analogs & derivatives</subject><subject>Starch - chemistry</subject><subject>Surface Properties</subject><subject>Technology, Pharmaceutical - methods</subject><subject>Terpenes - chemistry</subject><subject>Time Factors</subject><subject>Viscosity</subject><issn>0378-5173</issn><issn>1873-3476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE2L2zAQhkVp6WbT_oQWX0pPdkcef8R7KUvYj0Cgh81xQUzkcaIg21nJDvTfVybZ7XFPQqPnHb08QnyTkEiQxa9DYg7HPbk2SSHMQCaQyQ9iJhclxpiVxUcxAywXcS5LvBLX3h8AoEglfhZXIYILiXImnp96e-JusOx9dDLebC1H1uz2Q6xHR9NN9zSYbncTrZJo6cxgNNmo6V072vDQdxF1dXR0vQ4rAhcdyVHLAzv_RXxqyHr-ejnnYnN_t1k-xus_D6vl7TrWWOZDjLitUFLZpAx1WmogLoCgznirU9Q5seYmANRwFTCqaqZ0GkBVFXWOc_HzvDaUeBnZD6o1XrO11HE_elUiSsyrDAOZn0nteu8dN-roTEvur5KgJq3qoC5a1aRVgVRBa8h9v_wwbluu31KvHgPw4wKQD3oaR502_j-XViCzairw-8xx0HEy7JTXhjvNtXGsB1X35p0q_wBcR5q0</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Bose, Sagarika</creator><creator>Bogner, Robin H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201006</creationdate><title>Solventless visible light-curable coating: I. Critical formulation and processing parameters</title><author>Bose, Sagarika ; Bogner, Robin H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-33b931a7f2e0d27c0ae60a0d4ebc23c5aecef31aafe91a7a9dea2f31a0996d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological and medical sciences</topic><topic>Bisphenol A-Glycidyl Methacrylate - chemistry</topic><topic>Bisphenol A-Glycidyl Methacrylate - radiation effects</topic><topic>Chemistry, Pharmaceutical</topic><topic>Coating</topic><topic>Color</topic><topic>Dosage Forms</topic><topic>Drug Compounding</topic><topic>Formulation variables</topic><topic>General pharmacology</topic><topic>Hardness</topic><topic>Lactose - chemistry</topic><topic>Light</topic><topic>Medical sciences</topic><topic>Methacrylates - chemistry</topic><topic>Models, Chemical</topic><topic>Particle Size</topic><topic>Pellets</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Photochemical Processes</topic><topic>Photosensitizing Agents - chemistry</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polyethylene Glycols - radiation effects</topic><topic>Polymer</topic><topic>Polymethacrylic Acids - chemistry</topic><topic>Polymethacrylic Acids - radiation effects</topic><topic>Porosity</topic><topic>Processing parameters</topic><topic>Starch - analogs & derivatives</topic><topic>Starch - chemistry</topic><topic>Surface Properties</topic><topic>Technology, Pharmaceutical - methods</topic><topic>Terpenes - chemistry</topic><topic>Time Factors</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bose, Sagarika</creatorcontrib><creatorcontrib>Bogner, Robin H.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bose, Sagarika</au><au>Bogner, Robin H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solventless visible light-curable coating: I. Critical formulation and processing parameters</atitle><jtitle>International journal of pharmaceutics</jtitle><addtitle>Int J Pharm</addtitle><date>2010-06</date><risdate>2010</risdate><volume>393</volume><issue>1</issue><spage>32</spage><epage>40</epage><pages>32-40</pages><issn>0378-5173</issn><eissn>1873-3476</eissn><coden>IJPHDE</coden><abstract>Film coating is generally accomplished by spraying polymers dissolved in solvents onto a cascading bed of tablets. The limitations associated with the use of solvents (both aqueous and organic) can be overcome by the use of solventless coating technologies. In this proposed solventless photocurable film coating system, each layer of coating onto the pellets (non-pareil beads) was formed using liquid photocurable monomer, powdered pore-forming agents, photosensitizers and photoinitiators in a mini-coating pan and later cured by visible light. Yield, coating efficiency, variation in color, diameter and roundness were determined for each batch to evaluate process efficiency and coating quality. It was found that the ratio (S/L ratio) of the amount of solid (S) pore-forming agent to volume of liquid (L) monomer, particle size and type of the pore-forming agent, concentration of initiator, and total exposure (light intensity
×
exposure time) of light were critical formulation and processing parameters for the process. Using lactose as a pore-forming agent, an optimum ratio of pore-forming agent to photocurable polymer was 1.8–3.0 to achieve good process efficiency and uniformity. The ratio was sensitive to particle size and type of pore-forming agent.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>20138131</pmid><doi>10.1016/j.ijpharm.2010.01.041</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-5173 |
ispartof | International journal of pharmaceutics, 2010-06, Vol.393 (1), p.32-40 |
issn | 0378-5173 1873-3476 |
language | eng |
recordid | cdi_proquest_miscellaneous_733135943 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Biological and medical sciences Bisphenol A-Glycidyl Methacrylate - chemistry Bisphenol A-Glycidyl Methacrylate - radiation effects Chemistry, Pharmaceutical Coating Color Dosage Forms Drug Compounding Formulation variables General pharmacology Hardness Lactose - chemistry Light Medical sciences Methacrylates - chemistry Models, Chemical Particle Size Pellets Pharmaceutical technology. Pharmaceutical industry Pharmacology. Drug treatments Photochemical Processes Photosensitizing Agents - chemistry Polyethylene Glycols - chemistry Polyethylene Glycols - radiation effects Polymer Polymethacrylic Acids - chemistry Polymethacrylic Acids - radiation effects Porosity Processing parameters Starch - analogs & derivatives Starch - chemistry Surface Properties Technology, Pharmaceutical - methods Terpenes - chemistry Time Factors Viscosity |
title | Solventless visible light-curable coating: I. Critical formulation and processing parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A13%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solventless%20visible%20light-curable%20coating:%20I.%20Critical%20formulation%20and%20processing%20parameters&rft.jtitle=International%20journal%20of%20pharmaceutics&rft.au=Bose,%20Sagarika&rft.date=2010-06&rft.volume=393&rft.issue=1&rft.spage=32&rft.epage=40&rft.pages=32-40&rft.issn=0378-5173&rft.eissn=1873-3476&rft.coden=IJPHDE&rft_id=info:doi/10.1016/j.ijpharm.2010.01.041&rft_dat=%3Cproquest_cross%3E733135943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733135943&rft_id=info:pmid/20138131&rft_els_id=S0378517310000943&rfr_iscdi=true |