Solventless visible light-curable coating: I. Critical formulation and processing parameters

Film coating is generally accomplished by spraying polymers dissolved in solvents onto a cascading bed of tablets. The limitations associated with the use of solvents (both aqueous and organic) can be overcome by the use of solventless coating technologies. In this proposed solventless photocurable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2010-06, Vol.393 (1), p.32-40
Hauptverfasser: Bose, Sagarika, Bogner, Robin H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40
container_issue 1
container_start_page 32
container_title International journal of pharmaceutics
container_volume 393
creator Bose, Sagarika
Bogner, Robin H.
description Film coating is generally accomplished by spraying polymers dissolved in solvents onto a cascading bed of tablets. The limitations associated with the use of solvents (both aqueous and organic) can be overcome by the use of solventless coating technologies. In this proposed solventless photocurable film coating system, each layer of coating onto the pellets (non-pareil beads) was formed using liquid photocurable monomer, powdered pore-forming agents, photosensitizers and photoinitiators in a mini-coating pan and later cured by visible light. Yield, coating efficiency, variation in color, diameter and roundness were determined for each batch to evaluate process efficiency and coating quality. It was found that the ratio (S/L ratio) of the amount of solid (S) pore-forming agent to volume of liquid (L) monomer, particle size and type of the pore-forming agent, concentration of initiator, and total exposure (light intensity × exposure time) of light were critical formulation and processing parameters for the process. Using lactose as a pore-forming agent, an optimum ratio of pore-forming agent to photocurable polymer was 1.8–3.0 to achieve good process efficiency and uniformity. The ratio was sensitive to particle size and type of pore-forming agent.
doi_str_mv 10.1016/j.ijpharm.2010.01.041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733135943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378517310000943</els_id><sourcerecordid>733135943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-33b931a7f2e0d27c0ae60a0d4ebc23c5aecef31aafe91a7a9dea2f31a0996d53</originalsourceid><addsrcrecordid>eNqFkE2L2zAQhkVp6WbT_oQWX0pPdkcef8R7KUvYj0Cgh81xQUzkcaIg21nJDvTfVybZ7XFPQqPnHb08QnyTkEiQxa9DYg7HPbk2SSHMQCaQyQ9iJhclxpiVxUcxAywXcS5LvBLX3h8AoEglfhZXIYILiXImnp96e-JusOx9dDLebC1H1uz2Q6xHR9NN9zSYbncTrZJo6cxgNNmo6V072vDQdxF1dXR0vQ4rAhcdyVHLAzv_RXxqyHr-ejnnYnN_t1k-xus_D6vl7TrWWOZDjLitUFLZpAx1WmogLoCgznirU9Q5seYmANRwFTCqaqZ0GkBVFXWOc_HzvDaUeBnZD6o1XrO11HE_elUiSsyrDAOZn0nteu8dN-roTEvur5KgJq3qoC5a1aRVgVRBa8h9v_wwbluu31KvHgPw4wKQD3oaR502_j-XViCzairw-8xx0HEy7JTXhjvNtXGsB1X35p0q_wBcR5q0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733135943</pqid></control><display><type>article</type><title>Solventless visible light-curable coating: I. Critical formulation and processing parameters</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Bose, Sagarika ; Bogner, Robin H.</creator><creatorcontrib>Bose, Sagarika ; Bogner, Robin H.</creatorcontrib><description>Film coating is generally accomplished by spraying polymers dissolved in solvents onto a cascading bed of tablets. The limitations associated with the use of solvents (both aqueous and organic) can be overcome by the use of solventless coating technologies. In this proposed solventless photocurable film coating system, each layer of coating onto the pellets (non-pareil beads) was formed using liquid photocurable monomer, powdered pore-forming agents, photosensitizers and photoinitiators in a mini-coating pan and later cured by visible light. Yield, coating efficiency, variation in color, diameter and roundness were determined for each batch to evaluate process efficiency and coating quality. It was found that the ratio (S/L ratio) of the amount of solid (S) pore-forming agent to volume of liquid (L) monomer, particle size and type of the pore-forming agent, concentration of initiator, and total exposure (light intensity × exposure time) of light were critical formulation and processing parameters for the process. Using lactose as a pore-forming agent, an optimum ratio of pore-forming agent to photocurable polymer was 1.8–3.0 to achieve good process efficiency and uniformity. The ratio was sensitive to particle size and type of pore-forming agent.</description><identifier>ISSN: 0378-5173</identifier><identifier>EISSN: 1873-3476</identifier><identifier>DOI: 10.1016/j.ijpharm.2010.01.041</identifier><identifier>PMID: 20138131</identifier><identifier>CODEN: IJPHDE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Biological and medical sciences ; Bisphenol A-Glycidyl Methacrylate - chemistry ; Bisphenol A-Glycidyl Methacrylate - radiation effects ; Chemistry, Pharmaceutical ; Coating ; Color ; Dosage Forms ; Drug Compounding ; Formulation variables ; General pharmacology ; Hardness ; Lactose - chemistry ; Light ; Medical sciences ; Methacrylates - chemistry ; Models, Chemical ; Particle Size ; Pellets ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Photochemical Processes ; Photosensitizing Agents - chemistry ; Polyethylene Glycols - chemistry ; Polyethylene Glycols - radiation effects ; Polymer ; Polymethacrylic Acids - chemistry ; Polymethacrylic Acids - radiation effects ; Porosity ; Processing parameters ; Starch - analogs &amp; derivatives ; Starch - chemistry ; Surface Properties ; Technology, Pharmaceutical - methods ; Terpenes - chemistry ; Time Factors ; Viscosity</subject><ispartof>International journal of pharmaceutics, 2010-06, Vol.393 (1), p.32-40</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-33b931a7f2e0d27c0ae60a0d4ebc23c5aecef31aafe91a7a9dea2f31a0996d53</citedby><cites>FETCH-LOGICAL-c375t-33b931a7f2e0d27c0ae60a0d4ebc23c5aecef31aafe91a7a9dea2f31a0996d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijpharm.2010.01.041$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22901493$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20138131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bose, Sagarika</creatorcontrib><creatorcontrib>Bogner, Robin H.</creatorcontrib><title>Solventless visible light-curable coating: I. Critical formulation and processing parameters</title><title>International journal of pharmaceutics</title><addtitle>Int J Pharm</addtitle><description>Film coating is generally accomplished by spraying polymers dissolved in solvents onto a cascading bed of tablets. The limitations associated with the use of solvents (both aqueous and organic) can be overcome by the use of solventless coating technologies. In this proposed solventless photocurable film coating system, each layer of coating onto the pellets (non-pareil beads) was formed using liquid photocurable monomer, powdered pore-forming agents, photosensitizers and photoinitiators in a mini-coating pan and later cured by visible light. Yield, coating efficiency, variation in color, diameter and roundness were determined for each batch to evaluate process efficiency and coating quality. It was found that the ratio (S/L ratio) of the amount of solid (S) pore-forming agent to volume of liquid (L) monomer, particle size and type of the pore-forming agent, concentration of initiator, and total exposure (light intensity × exposure time) of light were critical formulation and processing parameters for the process. Using lactose as a pore-forming agent, an optimum ratio of pore-forming agent to photocurable polymer was 1.8–3.0 to achieve good process efficiency and uniformity. The ratio was sensitive to particle size and type of pore-forming agent.</description><subject>Biological and medical sciences</subject><subject>Bisphenol A-Glycidyl Methacrylate - chemistry</subject><subject>Bisphenol A-Glycidyl Methacrylate - radiation effects</subject><subject>Chemistry, Pharmaceutical</subject><subject>Coating</subject><subject>Color</subject><subject>Dosage Forms</subject><subject>Drug Compounding</subject><subject>Formulation variables</subject><subject>General pharmacology</subject><subject>Hardness</subject><subject>Lactose - chemistry</subject><subject>Light</subject><subject>Medical sciences</subject><subject>Methacrylates - chemistry</subject><subject>Models, Chemical</subject><subject>Particle Size</subject><subject>Pellets</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Photochemical Processes</subject><subject>Photosensitizing Agents - chemistry</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polyethylene Glycols - radiation effects</subject><subject>Polymer</subject><subject>Polymethacrylic Acids - chemistry</subject><subject>Polymethacrylic Acids - radiation effects</subject><subject>Porosity</subject><subject>Processing parameters</subject><subject>Starch - analogs &amp; derivatives</subject><subject>Starch - chemistry</subject><subject>Surface Properties</subject><subject>Technology, Pharmaceutical - methods</subject><subject>Terpenes - chemistry</subject><subject>Time Factors</subject><subject>Viscosity</subject><issn>0378-5173</issn><issn>1873-3476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE2L2zAQhkVp6WbT_oQWX0pPdkcef8R7KUvYj0Cgh81xQUzkcaIg21nJDvTfVybZ7XFPQqPnHb08QnyTkEiQxa9DYg7HPbk2SSHMQCaQyQ9iJhclxpiVxUcxAywXcS5LvBLX3h8AoEglfhZXIYILiXImnp96e-JusOx9dDLebC1H1uz2Q6xHR9NN9zSYbncTrZJo6cxgNNmo6V072vDQdxF1dXR0vQ4rAhcdyVHLAzv_RXxqyHr-ejnnYnN_t1k-xus_D6vl7TrWWOZDjLitUFLZpAx1WmogLoCgznirU9Q5seYmANRwFTCqaqZ0GkBVFXWOc_HzvDaUeBnZD6o1XrO11HE_elUiSsyrDAOZn0nteu8dN-roTEvur5KgJq3qoC5a1aRVgVRBa8h9v_wwbluu31KvHgPw4wKQD3oaR502_j-XViCzairw-8xx0HEy7JTXhjvNtXGsB1X35p0q_wBcR5q0</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Bose, Sagarika</creator><creator>Bogner, Robin H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201006</creationdate><title>Solventless visible light-curable coating: I. Critical formulation and processing parameters</title><author>Bose, Sagarika ; Bogner, Robin H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-33b931a7f2e0d27c0ae60a0d4ebc23c5aecef31aafe91a7a9dea2f31a0996d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological and medical sciences</topic><topic>Bisphenol A-Glycidyl Methacrylate - chemistry</topic><topic>Bisphenol A-Glycidyl Methacrylate - radiation effects</topic><topic>Chemistry, Pharmaceutical</topic><topic>Coating</topic><topic>Color</topic><topic>Dosage Forms</topic><topic>Drug Compounding</topic><topic>Formulation variables</topic><topic>General pharmacology</topic><topic>Hardness</topic><topic>Lactose - chemistry</topic><topic>Light</topic><topic>Medical sciences</topic><topic>Methacrylates - chemistry</topic><topic>Models, Chemical</topic><topic>Particle Size</topic><topic>Pellets</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Photochemical Processes</topic><topic>Photosensitizing Agents - chemistry</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polyethylene Glycols - radiation effects</topic><topic>Polymer</topic><topic>Polymethacrylic Acids - chemistry</topic><topic>Polymethacrylic Acids - radiation effects</topic><topic>Porosity</topic><topic>Processing parameters</topic><topic>Starch - analogs &amp; derivatives</topic><topic>Starch - chemistry</topic><topic>Surface Properties</topic><topic>Technology, Pharmaceutical - methods</topic><topic>Terpenes - chemistry</topic><topic>Time Factors</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bose, Sagarika</creatorcontrib><creatorcontrib>Bogner, Robin H.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bose, Sagarika</au><au>Bogner, Robin H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solventless visible light-curable coating: I. Critical formulation and processing parameters</atitle><jtitle>International journal of pharmaceutics</jtitle><addtitle>Int J Pharm</addtitle><date>2010-06</date><risdate>2010</risdate><volume>393</volume><issue>1</issue><spage>32</spage><epage>40</epage><pages>32-40</pages><issn>0378-5173</issn><eissn>1873-3476</eissn><coden>IJPHDE</coden><abstract>Film coating is generally accomplished by spraying polymers dissolved in solvents onto a cascading bed of tablets. The limitations associated with the use of solvents (both aqueous and organic) can be overcome by the use of solventless coating technologies. In this proposed solventless photocurable film coating system, each layer of coating onto the pellets (non-pareil beads) was formed using liquid photocurable monomer, powdered pore-forming agents, photosensitizers and photoinitiators in a mini-coating pan and later cured by visible light. Yield, coating efficiency, variation in color, diameter and roundness were determined for each batch to evaluate process efficiency and coating quality. It was found that the ratio (S/L ratio) of the amount of solid (S) pore-forming agent to volume of liquid (L) monomer, particle size and type of the pore-forming agent, concentration of initiator, and total exposure (light intensity × exposure time) of light were critical formulation and processing parameters for the process. Using lactose as a pore-forming agent, an optimum ratio of pore-forming agent to photocurable polymer was 1.8–3.0 to achieve good process efficiency and uniformity. The ratio was sensitive to particle size and type of pore-forming agent.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>20138131</pmid><doi>10.1016/j.ijpharm.2010.01.041</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-5173
ispartof International journal of pharmaceutics, 2010-06, Vol.393 (1), p.32-40
issn 0378-5173
1873-3476
language eng
recordid cdi_proquest_miscellaneous_733135943
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Biological and medical sciences
Bisphenol A-Glycidyl Methacrylate - chemistry
Bisphenol A-Glycidyl Methacrylate - radiation effects
Chemistry, Pharmaceutical
Coating
Color
Dosage Forms
Drug Compounding
Formulation variables
General pharmacology
Hardness
Lactose - chemistry
Light
Medical sciences
Methacrylates - chemistry
Models, Chemical
Particle Size
Pellets
Pharmaceutical technology. Pharmaceutical industry
Pharmacology. Drug treatments
Photochemical Processes
Photosensitizing Agents - chemistry
Polyethylene Glycols - chemistry
Polyethylene Glycols - radiation effects
Polymer
Polymethacrylic Acids - chemistry
Polymethacrylic Acids - radiation effects
Porosity
Processing parameters
Starch - analogs & derivatives
Starch - chemistry
Surface Properties
Technology, Pharmaceutical - methods
Terpenes - chemistry
Time Factors
Viscosity
title Solventless visible light-curable coating: I. Critical formulation and processing parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A13%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solventless%20visible%20light-curable%20coating:%20I.%20Critical%20formulation%20and%20processing%20parameters&rft.jtitle=International%20journal%20of%20pharmaceutics&rft.au=Bose,%20Sagarika&rft.date=2010-06&rft.volume=393&rft.issue=1&rft.spage=32&rft.epage=40&rft.pages=32-40&rft.issn=0378-5173&rft.eissn=1873-3476&rft.coden=IJPHDE&rft_id=info:doi/10.1016/j.ijpharm.2010.01.041&rft_dat=%3Cproquest_cross%3E733135943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733135943&rft_id=info:pmid/20138131&rft_els_id=S0378517310000943&rfr_iscdi=true