Effect of erbium:yttrium–aluminum–garnet laser energies on superficial and deep dentin microhardness
This study evaluated the microhardness of superficial and deep dentin irradiated with different erbium:yttrium–aluminum–garnet (Er:YAG) laser energies. Seventy-two molars were bisected and randomly assigned to two groups (superficial dentin or deep dentin) and into six subgroups (160 mJ, 200 mJ, 260...
Gespeichert in:
Veröffentlicht in: | Lasers in medical science 2010-05, Vol.25 (3), p.317-324 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 324 |
---|---|
container_issue | 3 |
container_start_page | 317 |
container_title | Lasers in medical science |
container_volume | 25 |
creator | Chinelatti, Michelle Alexandra Raucci-Neto, Walter Corona, Silmara Aparecida Milori Palma-Dibb, Regina Guenka |
description | This study evaluated the microhardness of superficial and deep dentin irradiated with different erbium:yttrium–aluminum–garnet (Er:YAG) laser energies. Seventy-two molars were bisected and randomly assigned to two groups (superficial dentin or deep dentin) and into six subgroups (160 mJ, 200 mJ, 260 mJ, 300 mJ, 360 mJ, and control). After irradiation, the cavities were longitudinally bisected. Microhardness was measured at six points (20 µm, 40 µm, 60 µm, 80 µm, 100 µm, and 200 µm) under the cavity floor. Data were submitted to analysis of variance (ANOVA) and Fisher’s tests (α = 0.05). Superficial dentin presented higher microhardness than deep dentin; energy of 160 mJ resulted in the highest microhardness and 360 mJ the lowest one. Values at all points were different, exhibiting increasing microhardness throughout; superficial dentin microhardness was the highest at 20 µm with 160 mJ energy; for deep dentin, microhardness after irradiation at 160 mJ and 200 mJ was similar to that of the control. The lowest energy increased superficial dentin microhardness at the closest extent under the cavity; deep dentin microhardness was not altered by energies of 160 mJ and 200 mJ. |
doi_str_mv | 10.1007/s10103-008-0618-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733134011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733134011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-92bca67a5cd165414d9c6db287307e456938f8bd647f89fc9edb3cefa0743f033</originalsourceid><addsrcrecordid>eNp1kcGKFDEQhoMo7uzqA3iR4MVTa1Unk6S9ybKuwoIXBW8hnVRme-lOj0n3YW_7Dr6hT2LGGVAEL1UF-fKn8v-MvUB4gwD6bUFAEA2AaUChacQjtkEpto0C-e0x20CrTGO6Fs_YeSl3AKgViqfsDE1nWgliw26vYiS_8Dlyyv2wTu_ulyXX_vPhhxvXaUi_x53LiRY-ukKZU6K8G6jwOfGy7inHwQ9u5C4FHoj2taRlSHwafJ5vXQ6JSnnGnkQ3Fnp-6hfs64erL5cfm5vP158u3980XmhYmq7tvVPabX1AtZUoQ-dV6FujBWiSW9UJE00flNTRdNF3FHrhKTrQUkQQ4oK9Puru8_x9pbLYaSiextElmtditRAoJCBW8tU_5N285lSXs1jtUai6tkJ4hOpXSskU7T4Pk8v3FsEeQrDHEGwNwR5CsIcVXp6E136i8OfGyfUKtEeg1KO0o_zXy_9V_QUUTJU5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198261692</pqid></control><display><type>article</type><title>Effect of erbium:yttrium–aluminum–garnet laser energies on superficial and deep dentin microhardness</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Chinelatti, Michelle Alexandra ; Raucci-Neto, Walter ; Corona, Silmara Aparecida Milori ; Palma-Dibb, Regina Guenka</creator><creatorcontrib>Chinelatti, Michelle Alexandra ; Raucci-Neto, Walter ; Corona, Silmara Aparecida Milori ; Palma-Dibb, Regina Guenka</creatorcontrib><description>This study evaluated the microhardness of superficial and deep dentin irradiated with different erbium:yttrium–aluminum–garnet (Er:YAG) laser energies. Seventy-two molars were bisected and randomly assigned to two groups (superficial dentin or deep dentin) and into six subgroups (160 mJ, 200 mJ, 260 mJ, 300 mJ, 360 mJ, and control). After irradiation, the cavities were longitudinally bisected. Microhardness was measured at six points (20 µm, 40 µm, 60 µm, 80 µm, 100 µm, and 200 µm) under the cavity floor. Data were submitted to analysis of variance (ANOVA) and Fisher’s tests (α = 0.05). Superficial dentin presented higher microhardness than deep dentin; energy of 160 mJ resulted in the highest microhardness and 360 mJ the lowest one. Values at all points were different, exhibiting increasing microhardness throughout; superficial dentin microhardness was the highest at 20 µm with 160 mJ energy; for deep dentin, microhardness after irradiation at 160 mJ and 200 mJ was similar to that of the control. The lowest energy increased superficial dentin microhardness at the closest extent under the cavity; deep dentin microhardness was not altered by energies of 160 mJ and 200 mJ.</description><identifier>ISSN: 0268-8921</identifier><identifier>EISSN: 1435-604X</identifier><identifier>DOI: 10.1007/s10103-008-0618-3</identifier><identifier>PMID: 18982403</identifier><identifier>CODEN: LMSCEZ</identifier><language>eng</language><publisher>London: Springer-Verlag</publisher><subject>Dental Cavity Preparation - adverse effects ; Dental Cavity Preparation - methods ; Dental research ; Dentin - physiology ; Dentin - radiation effects ; Dentin - ultrastructure ; Dentistry ; Hardness - radiation effects ; Hardness Tests ; Humans ; In Vitro Techniques ; Lasers ; Lasers, Solid-State - adverse effects ; Lasers, Solid-State - therapeutic use ; Medicine ; Medicine & Public Health ; Microhardness ; Microscopy, Electron, Scanning ; Molar, Third - physiology ; Molar, Third - radiation effects ; Molar, Third - ultrastructure ; Optical Devices ; Optics ; Original Article ; Photonics ; Quantum Optics ; Random Allocation ; Teeth</subject><ispartof>Lasers in medical science, 2010-05, Vol.25 (3), p.317-324</ispartof><rights>Springer-Verlag London Ltd 2008</rights><rights>Springer-Verlag London Ltd 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-92bca67a5cd165414d9c6db287307e456938f8bd647f89fc9edb3cefa0743f033</citedby><cites>FETCH-LOGICAL-c370t-92bca67a5cd165414d9c6db287307e456938f8bd647f89fc9edb3cefa0743f033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10103-008-0618-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10103-008-0618-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18982403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chinelatti, Michelle Alexandra</creatorcontrib><creatorcontrib>Raucci-Neto, Walter</creatorcontrib><creatorcontrib>Corona, Silmara Aparecida Milori</creatorcontrib><creatorcontrib>Palma-Dibb, Regina Guenka</creatorcontrib><title>Effect of erbium:yttrium–aluminum–garnet laser energies on superficial and deep dentin microhardness</title><title>Lasers in medical science</title><addtitle>Lasers Med Sci</addtitle><addtitle>Lasers Med Sci</addtitle><description>This study evaluated the microhardness of superficial and deep dentin irradiated with different erbium:yttrium–aluminum–garnet (Er:YAG) laser energies. Seventy-two molars were bisected and randomly assigned to two groups (superficial dentin or deep dentin) and into six subgroups (160 mJ, 200 mJ, 260 mJ, 300 mJ, 360 mJ, and control). After irradiation, the cavities were longitudinally bisected. Microhardness was measured at six points (20 µm, 40 µm, 60 µm, 80 µm, 100 µm, and 200 µm) under the cavity floor. Data were submitted to analysis of variance (ANOVA) and Fisher’s tests (α = 0.05). Superficial dentin presented higher microhardness than deep dentin; energy of 160 mJ resulted in the highest microhardness and 360 mJ the lowest one. Values at all points were different, exhibiting increasing microhardness throughout; superficial dentin microhardness was the highest at 20 µm with 160 mJ energy; for deep dentin, microhardness after irradiation at 160 mJ and 200 mJ was similar to that of the control. The lowest energy increased superficial dentin microhardness at the closest extent under the cavity; deep dentin microhardness was not altered by energies of 160 mJ and 200 mJ.</description><subject>Dental Cavity Preparation - adverse effects</subject><subject>Dental Cavity Preparation - methods</subject><subject>Dental research</subject><subject>Dentin - physiology</subject><subject>Dentin - radiation effects</subject><subject>Dentin - ultrastructure</subject><subject>Dentistry</subject><subject>Hardness - radiation effects</subject><subject>Hardness Tests</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Lasers</subject><subject>Lasers, Solid-State - adverse effects</subject><subject>Lasers, Solid-State - therapeutic use</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Microhardness</subject><subject>Microscopy, Electron, Scanning</subject><subject>Molar, Third - physiology</subject><subject>Molar, Third - radiation effects</subject><subject>Molar, Third - ultrastructure</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Original Article</subject><subject>Photonics</subject><subject>Quantum Optics</subject><subject>Random Allocation</subject><subject>Teeth</subject><issn>0268-8921</issn><issn>1435-604X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kcGKFDEQhoMo7uzqA3iR4MVTa1Unk6S9ybKuwoIXBW8hnVRme-lOj0n3YW_7Dr6hT2LGGVAEL1UF-fKn8v-MvUB4gwD6bUFAEA2AaUChacQjtkEpto0C-e0x20CrTGO6Fs_YeSl3AKgViqfsDE1nWgliw26vYiS_8Dlyyv2wTu_ulyXX_vPhhxvXaUi_x53LiRY-ukKZU6K8G6jwOfGy7inHwQ9u5C4FHoj2taRlSHwafJ5vXQ6JSnnGnkQ3Fnp-6hfs64erL5cfm5vP158u3980XmhYmq7tvVPabX1AtZUoQ-dV6FujBWiSW9UJE00flNTRdNF3FHrhKTrQUkQQ4oK9Puru8_x9pbLYaSiextElmtditRAoJCBW8tU_5N285lSXs1jtUai6tkJ4hOpXSskU7T4Pk8v3FsEeQrDHEGwNwR5CsIcVXp6E136i8OfGyfUKtEeg1KO0o_zXy_9V_QUUTJU5</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Chinelatti, Michelle Alexandra</creator><creator>Raucci-Neto, Walter</creator><creator>Corona, Silmara Aparecida Milori</creator><creator>Palma-Dibb, Regina Guenka</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SP</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20100501</creationdate><title>Effect of erbium:yttrium–aluminum–garnet laser energies on superficial and deep dentin microhardness</title><author>Chinelatti, Michelle Alexandra ; Raucci-Neto, Walter ; Corona, Silmara Aparecida Milori ; Palma-Dibb, Regina Guenka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-92bca67a5cd165414d9c6db287307e456938f8bd647f89fc9edb3cefa0743f033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Dental Cavity Preparation - adverse effects</topic><topic>Dental Cavity Preparation - methods</topic><topic>Dental research</topic><topic>Dentin - physiology</topic><topic>Dentin - radiation effects</topic><topic>Dentin - ultrastructure</topic><topic>Dentistry</topic><topic>Hardness - radiation effects</topic><topic>Hardness Tests</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Lasers</topic><topic>Lasers, Solid-State - adverse effects</topic><topic>Lasers, Solid-State - therapeutic use</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Microhardness</topic><topic>Microscopy, Electron, Scanning</topic><topic>Molar, Third - physiology</topic><topic>Molar, Third - radiation effects</topic><topic>Molar, Third - ultrastructure</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Original Article</topic><topic>Photonics</topic><topic>Quantum Optics</topic><topic>Random Allocation</topic><topic>Teeth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chinelatti, Michelle Alexandra</creatorcontrib><creatorcontrib>Raucci-Neto, Walter</creatorcontrib><creatorcontrib>Corona, Silmara Aparecida Milori</creatorcontrib><creatorcontrib>Palma-Dibb, Regina Guenka</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Lasers in medical science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chinelatti, Michelle Alexandra</au><au>Raucci-Neto, Walter</au><au>Corona, Silmara Aparecida Milori</au><au>Palma-Dibb, Regina Guenka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of erbium:yttrium–aluminum–garnet laser energies on superficial and deep dentin microhardness</atitle><jtitle>Lasers in medical science</jtitle><stitle>Lasers Med Sci</stitle><addtitle>Lasers Med Sci</addtitle><date>2010-05-01</date><risdate>2010</risdate><volume>25</volume><issue>3</issue><spage>317</spage><epage>324</epage><pages>317-324</pages><issn>0268-8921</issn><eissn>1435-604X</eissn><coden>LMSCEZ</coden><abstract>This study evaluated the microhardness of superficial and deep dentin irradiated with different erbium:yttrium–aluminum–garnet (Er:YAG) laser energies. Seventy-two molars were bisected and randomly assigned to two groups (superficial dentin or deep dentin) and into six subgroups (160 mJ, 200 mJ, 260 mJ, 300 mJ, 360 mJ, and control). After irradiation, the cavities were longitudinally bisected. Microhardness was measured at six points (20 µm, 40 µm, 60 µm, 80 µm, 100 µm, and 200 µm) under the cavity floor. Data were submitted to analysis of variance (ANOVA) and Fisher’s tests (α = 0.05). Superficial dentin presented higher microhardness than deep dentin; energy of 160 mJ resulted in the highest microhardness and 360 mJ the lowest one. Values at all points were different, exhibiting increasing microhardness throughout; superficial dentin microhardness was the highest at 20 µm with 160 mJ energy; for deep dentin, microhardness after irradiation at 160 mJ and 200 mJ was similar to that of the control. The lowest energy increased superficial dentin microhardness at the closest extent under the cavity; deep dentin microhardness was not altered by energies of 160 mJ and 200 mJ.</abstract><cop>London</cop><pub>Springer-Verlag</pub><pmid>18982403</pmid><doi>10.1007/s10103-008-0618-3</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-8921 |
ispartof | Lasers in medical science, 2010-05, Vol.25 (3), p.317-324 |
issn | 0268-8921 1435-604X |
language | eng |
recordid | cdi_proquest_miscellaneous_733134011 |
source | MEDLINE; SpringerLink Journals |
subjects | Dental Cavity Preparation - adverse effects Dental Cavity Preparation - methods Dental research Dentin - physiology Dentin - radiation effects Dentin - ultrastructure Dentistry Hardness - radiation effects Hardness Tests Humans In Vitro Techniques Lasers Lasers, Solid-State - adverse effects Lasers, Solid-State - therapeutic use Medicine Medicine & Public Health Microhardness Microscopy, Electron, Scanning Molar, Third - physiology Molar, Third - radiation effects Molar, Third - ultrastructure Optical Devices Optics Original Article Photonics Quantum Optics Random Allocation Teeth |
title | Effect of erbium:yttrium–aluminum–garnet laser energies on superficial and deep dentin microhardness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20erbium:yttrium%E2%80%93aluminum%E2%80%93garnet%20laser%20energies%20on%20superficial%20and%20deep%20dentin%20microhardness&rft.jtitle=Lasers%20in%20medical%20science&rft.au=Chinelatti,%20Michelle%20Alexandra&rft.date=2010-05-01&rft.volume=25&rft.issue=3&rft.spage=317&rft.epage=324&rft.pages=317-324&rft.issn=0268-8921&rft.eissn=1435-604X&rft.coden=LMSCEZ&rft_id=info:doi/10.1007/s10103-008-0618-3&rft_dat=%3Cproquest_cross%3E733134011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198261692&rft_id=info:pmid/18982403&rfr_iscdi=true |