Metal−Organic Framework MIL-101 for Adsorption and Effect of Terminal Water Molecules: From Quantum Mechanics to Molecular Simulation

MIL-101 is a chromium terephthalate-based mesoscopic metal−organic framework and one of the most porous materials reported to date. In this study, we investigate the adsorption of CO2 and CH4 in dehydrated and hydrated MIL-101 and the effect of terminal water molecules on adsorption. The atomistic s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2010-06, Vol.26 (11), p.8743-8750
Hauptverfasser: Chen, Y. F, Babarao, R, Sandler, S. I, Jiang, J. W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8750
container_issue 11
container_start_page 8743
container_title Langmuir
container_volume 26
creator Chen, Y. F
Babarao, R
Sandler, S. I
Jiang, J. W
description MIL-101 is a chromium terephthalate-based mesoscopic metal−organic framework and one of the most porous materials reported to date. In this study, we investigate the adsorption of CO2 and CH4 in dehydrated and hydrated MIL-101 and the effect of terminal water molecules on adsorption. The atomistic structures of MIL-101 are constructed from experimental crystallographic data, energy minimization, and quantum mechanical optimization. The adsorption isotherm of CO2 predicted from molecular simulation agrees well with experiment and is relatively insensitive to the method (Merz−Kollman or Mulliken) used to estimate the framework charges. Both the united-atom and five-site models of CH4 predict the isotherm fairly well, though the former overestimates and the latter underestimates. Adsorption first occurs in the microporous supertetrahedra at low pressures and then in the mesoscopic cages with increasing pressure. In the dehydrated MIL-101, more adsorbate molecules are located near the exposed Cr2 sites than the fluorine saturated Cr1 sites. The terminal water molecules in the hydrated MIL-101 act as additional interaction sites and enhance adsorption at low pressures. This enhancement is more pronounced for CO2 than for CH4, because CO2 is quadrapolar and interacts more strongly with the terminal water molecules. At high pressures, however, the reverse is observed, as the presence of terminal water molecules reduces free volume and adsorption. For the adsorption of CO2/CH4 mixture, a higher selectivity is found in the hydrated MIL-101.
doi_str_mv 10.1021/la904502h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733123494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733123494</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-a02fe08dbd83814d4164828133e5543dfa8b5dd61996c2e5f4acd17ad6dc71853</originalsourceid><addsrcrecordid>eNptkM1O3DAURq2qqAy0i75A5U1VsUjr38TpDiGgSDNCVUEsozv2dQl14qmdCPEEsOYReRIyYoANq29z7rnSIeQzZ985E_xHgJopzcTlOzLjWrBCG1G9JzNWKVlUqpTbZCfnK8ZYLVX9gWwLNt0JqWfkdoEDhIe7-9P0F_rW0qMEHV7H9I8uTuYFZ5z6mOi-yzGthjb2FHpHD71HO9Do6Rmmru0h0AsYMNFFDGjHgPnnJIod_T1CP4wdXaC9XOszHeIzBIn-abtp19qPZMtDyPhps7vk_Ojw7OBXMT89PjnYnxegOBsKYMIjM27pjDRcOcVLZYThUqLWSjoPZqmdK3ldl1ag9gqs4xW40tmKGy13ybcn7yrF_yPmoenabDEE6DGOuamk5GKKpCZy74m0Keac0Der1HaQbhrOmnX25iX7xH7ZWMdlh-6FfO48AV83AGQLwSfobZtfOWGElpV65cDm5iqOaUqb33j4CIjQlwY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733123494</pqid></control><display><type>article</type><title>Metal−Organic Framework MIL-101 for Adsorption and Effect of Terminal Water Molecules: From Quantum Mechanics to Molecular Simulation</title><source>ACS Publications</source><creator>Chen, Y. F ; Babarao, R ; Sandler, S. I ; Jiang, J. W</creator><creatorcontrib>Chen, Y. F ; Babarao, R ; Sandler, S. I ; Jiang, J. W</creatorcontrib><description>MIL-101 is a chromium terephthalate-based mesoscopic metal−organic framework and one of the most porous materials reported to date. In this study, we investigate the adsorption of CO2 and CH4 in dehydrated and hydrated MIL-101 and the effect of terminal water molecules on adsorption. The atomistic structures of MIL-101 are constructed from experimental crystallographic data, energy minimization, and quantum mechanical optimization. The adsorption isotherm of CO2 predicted from molecular simulation agrees well with experiment and is relatively insensitive to the method (Merz−Kollman or Mulliken) used to estimate the framework charges. Both the united-atom and five-site models of CH4 predict the isotherm fairly well, though the former overestimates and the latter underestimates. Adsorption first occurs in the microporous supertetrahedra at low pressures and then in the mesoscopic cages with increasing pressure. In the dehydrated MIL-101, more adsorbate molecules are located near the exposed Cr2 sites than the fluorine saturated Cr1 sites. The terminal water molecules in the hydrated MIL-101 act as additional interaction sites and enhance adsorption at low pressures. This enhancement is more pronounced for CO2 than for CH4, because CO2 is quadrapolar and interacts more strongly with the terminal water molecules. At high pressures, however, the reverse is observed, as the presence of terminal water molecules reduces free volume and adsorption. For the adsorption of CO2/CH4 mixture, a higher selectivity is found in the hydrated MIL-101.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la904502h</identifier><identifier>PMID: 20102235</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Colloidal state and disperse state ; Exact sciences and technology ; General and physical chemistry ; Materials: Nano-and Mesostructured Materials, Polymers, Gels, Liquid Crystals, Composites ; Porous materials ; Surface physical chemistry</subject><ispartof>Langmuir, 2010-06, Vol.26 (11), p.8743-8750</ispartof><rights>Copyright © American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-a02fe08dbd83814d4164828133e5543dfa8b5dd61996c2e5f4acd17ad6dc71853</citedby><cites>FETCH-LOGICAL-a410t-a02fe08dbd83814d4164828133e5543dfa8b5dd61996c2e5f4acd17ad6dc71853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la904502h$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la904502h$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22825374$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20102235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Y. F</creatorcontrib><creatorcontrib>Babarao, R</creatorcontrib><creatorcontrib>Sandler, S. I</creatorcontrib><creatorcontrib>Jiang, J. W</creatorcontrib><title>Metal−Organic Framework MIL-101 for Adsorption and Effect of Terminal Water Molecules: From Quantum Mechanics to Molecular Simulation</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>MIL-101 is a chromium terephthalate-based mesoscopic metal−organic framework and one of the most porous materials reported to date. In this study, we investigate the adsorption of CO2 and CH4 in dehydrated and hydrated MIL-101 and the effect of terminal water molecules on adsorption. The atomistic structures of MIL-101 are constructed from experimental crystallographic data, energy minimization, and quantum mechanical optimization. The adsorption isotherm of CO2 predicted from molecular simulation agrees well with experiment and is relatively insensitive to the method (Merz−Kollman or Mulliken) used to estimate the framework charges. Both the united-atom and five-site models of CH4 predict the isotherm fairly well, though the former overestimates and the latter underestimates. Adsorption first occurs in the microporous supertetrahedra at low pressures and then in the mesoscopic cages with increasing pressure. In the dehydrated MIL-101, more adsorbate molecules are located near the exposed Cr2 sites than the fluorine saturated Cr1 sites. The terminal water molecules in the hydrated MIL-101 act as additional interaction sites and enhance adsorption at low pressures. This enhancement is more pronounced for CO2 than for CH4, because CO2 is quadrapolar and interacts more strongly with the terminal water molecules. At high pressures, however, the reverse is observed, as the presence of terminal water molecules reduces free volume and adsorption. For the adsorption of CO2/CH4 mixture, a higher selectivity is found in the hydrated MIL-101.</description><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Materials: Nano-and Mesostructured Materials, Polymers, Gels, Liquid Crystals, Composites</subject><subject>Porous materials</subject><subject>Surface physical chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkM1O3DAURq2qqAy0i75A5U1VsUjr38TpDiGgSDNCVUEsozv2dQl14qmdCPEEsOYReRIyYoANq29z7rnSIeQzZ985E_xHgJopzcTlOzLjWrBCG1G9JzNWKVlUqpTbZCfnK8ZYLVX9gWwLNt0JqWfkdoEDhIe7-9P0F_rW0qMEHV7H9I8uTuYFZ5z6mOi-yzGthjb2FHpHD71HO9Do6Rmmru0h0AsYMNFFDGjHgPnnJIod_T1CP4wdXaC9XOszHeIzBIn-abtp19qPZMtDyPhps7vk_Ojw7OBXMT89PjnYnxegOBsKYMIjM27pjDRcOcVLZYThUqLWSjoPZqmdK3ldl1ag9gqs4xW40tmKGy13ybcn7yrF_yPmoenabDEE6DGOuamk5GKKpCZy74m0Keac0Der1HaQbhrOmnX25iX7xH7ZWMdlh-6FfO48AV83AGQLwSfobZtfOWGElpV65cDm5iqOaUqb33j4CIjQlwY</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Chen, Y. F</creator><creator>Babarao, R</creator><creator>Sandler, S. I</creator><creator>Jiang, J. W</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100601</creationdate><title>Metal−Organic Framework MIL-101 for Adsorption and Effect of Terminal Water Molecules: From Quantum Mechanics to Molecular Simulation</title><author>Chen, Y. F ; Babarao, R ; Sandler, S. I ; Jiang, J. W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-a02fe08dbd83814d4164828133e5543dfa8b5dd61996c2e5f4acd17ad6dc71853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Materials: Nano-and Mesostructured Materials, Polymers, Gels, Liquid Crystals, Composites</topic><topic>Porous materials</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Y. F</creatorcontrib><creatorcontrib>Babarao, R</creatorcontrib><creatorcontrib>Sandler, S. I</creatorcontrib><creatorcontrib>Jiang, J. W</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Y. F</au><au>Babarao, R</au><au>Sandler, S. I</au><au>Jiang, J. W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal−Organic Framework MIL-101 for Adsorption and Effect of Terminal Water Molecules: From Quantum Mechanics to Molecular Simulation</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>26</volume><issue>11</issue><spage>8743</spage><epage>8750</epage><pages>8743-8750</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>MIL-101 is a chromium terephthalate-based mesoscopic metal−organic framework and one of the most porous materials reported to date. In this study, we investigate the adsorption of CO2 and CH4 in dehydrated and hydrated MIL-101 and the effect of terminal water molecules on adsorption. The atomistic structures of MIL-101 are constructed from experimental crystallographic data, energy minimization, and quantum mechanical optimization. The adsorption isotherm of CO2 predicted from molecular simulation agrees well with experiment and is relatively insensitive to the method (Merz−Kollman or Mulliken) used to estimate the framework charges. Both the united-atom and five-site models of CH4 predict the isotherm fairly well, though the former overestimates and the latter underestimates. Adsorption first occurs in the microporous supertetrahedra at low pressures and then in the mesoscopic cages with increasing pressure. In the dehydrated MIL-101, more adsorbate molecules are located near the exposed Cr2 sites than the fluorine saturated Cr1 sites. The terminal water molecules in the hydrated MIL-101 act as additional interaction sites and enhance adsorption at low pressures. This enhancement is more pronounced for CO2 than for CH4, because CO2 is quadrapolar and interacts more strongly with the terminal water molecules. At high pressures, however, the reverse is observed, as the presence of terminal water molecules reduces free volume and adsorption. For the adsorption of CO2/CH4 mixture, a higher selectivity is found in the hydrated MIL-101.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20102235</pmid><doi>10.1021/la904502h</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2010-06, Vol.26 (11), p.8743-8750
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_733123494
source ACS Publications
subjects Chemistry
Colloidal state and disperse state
Exact sciences and technology
General and physical chemistry
Materials: Nano-and Mesostructured Materials, Polymers, Gels, Liquid Crystals, Composites
Porous materials
Surface physical chemistry
title Metal−Organic Framework MIL-101 for Adsorption and Effect of Terminal Water Molecules: From Quantum Mechanics to Molecular Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T00%3A49%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%E2%88%92Organic%20Framework%20MIL-101%20for%20Adsorption%20and%20Effect%20of%20Terminal%20Water%20Molecules:%20From%20Quantum%20Mechanics%20to%20Molecular%20Simulation&rft.jtitle=Langmuir&rft.au=Chen,%20Y.%20F&rft.date=2010-06-01&rft.volume=26&rft.issue=11&rft.spage=8743&rft.epage=8750&rft.pages=8743-8750&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la904502h&rft_dat=%3Cproquest_cross%3E733123494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733123494&rft_id=info:pmid/20102235&rfr_iscdi=true