Laser characterization of ultrasonic wave propagation in random media

Lasers can be used to excite and detect ultrasonic waves in a wide variety of materials. This allows the measurement of absolute particle motion without the mechanical disturbances of contacting transducers. In an ultrasound transmission experiment, the wave field is usually accessible only on the b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2003-04, Vol.67 (4 Pt 2), p.046618-046618, Article 046618
Hauptverfasser: Scales, John A, Malcolm, Alison E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 046618
container_issue 4 Pt 2
container_start_page 046618
container_title Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
container_volume 67
creator Scales, John A
Malcolm, Alison E
description Lasers can be used to excite and detect ultrasonic waves in a wide variety of materials. This allows the measurement of absolute particle motion without the mechanical disturbances of contacting transducers. In an ultrasound transmission experiment, the wave field is usually accessible only on the boundaries of a sample. Using optical methods, one can measure the surface wave field, in effect, within the scattering region. Here, we describe noncontacting (laser source and detector) measurements of ultrasonic wave propagation in randomly heterogeneous rock samples. By scanning the surface of the sample, we can directly visualize the complex dynamics of diffraction, multiple scattering, mode conversion, and whispering gallery modes. We will show measurements on rock samples that have similar elastic moduli and intrinsic attenuation, but different grain sizes, and hence, different scattering strengths. The intensity data are well fit by a radiative transfer model, and we use this fact to infer the scattering mean free path.
doi_str_mv 10.1103/physreve.67.046618
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73312101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73312101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-921c36721eebd515e2f86d8b560d5f0f352994e51c11cbbc5f47f903e1cc6ff63</originalsourceid><addsrcrecordid>eNpFkM1LxDAQxYMorq7-Ax6kJ29dM0mTtEdZ1g9YUETPIU0nbqUfa9KurH-9kS54mgfz3mPmR8gV0AUA5bfbzT543OFCqgXNpIT8iJwBLUTKVa6Ooxa8iFqIGTkP4ZNSznienZIZMJVLwegZWa1NQJ_YjfHGDujrHzPUfZf0LhmbwZvQd7VNvs0Ok63vt-ZjWtdd4k1X9W3SYlWbC3LiTBPw8jDn5P1-9bZ8TNfPD0_Lu3VqM1UMacHAcqkYIJaVAIHM5bLKSyFpJRx1XLCiyFCABbBlaYXLlCsoR7BWOif5nNxMvfGWrxHDoNs6WGwa02E_Bq04BwYUopFNRuv7ECE5vfV1a_xeA9V_8PRLhPeKu5WWSk_wYuj60D6W8a3_yIEW_wXj_m2S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73312101</pqid></control><display><type>article</type><title>Laser characterization of ultrasonic wave propagation in random media</title><source>American Physical Society Journals</source><creator>Scales, John A ; Malcolm, Alison E</creator><creatorcontrib>Scales, John A ; Malcolm, Alison E</creatorcontrib><description>Lasers can be used to excite and detect ultrasonic waves in a wide variety of materials. This allows the measurement of absolute particle motion without the mechanical disturbances of contacting transducers. In an ultrasound transmission experiment, the wave field is usually accessible only on the boundaries of a sample. Using optical methods, one can measure the surface wave field, in effect, within the scattering region. Here, we describe noncontacting (laser source and detector) measurements of ultrasonic wave propagation in randomly heterogeneous rock samples. By scanning the surface of the sample, we can directly visualize the complex dynamics of diffraction, multiple scattering, mode conversion, and whispering gallery modes. We will show measurements on rock samples that have similar elastic moduli and intrinsic attenuation, but different grain sizes, and hence, different scattering strengths. The intensity data are well fit by a radiative transfer model, and we use this fact to infer the scattering mean free path.</description><identifier>ISSN: 1539-3755</identifier><identifier>ISSN: 1063-651X</identifier><identifier>EISSN: 1095-3787</identifier><identifier>DOI: 10.1103/physreve.67.046618</identifier><identifier>PMID: 12786520</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2003-04, Vol.67 (4 Pt 2), p.046618-046618, Article 046618</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-921c36721eebd515e2f86d8b560d5f0f352994e51c11cbbc5f47f903e1cc6ff63</citedby><cites>FETCH-LOGICAL-c479t-921c36721eebd515e2f86d8b560d5f0f352994e51c11cbbc5f47f903e1cc6ff63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12786520$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scales, John A</creatorcontrib><creatorcontrib>Malcolm, Alison E</creatorcontrib><title>Laser characterization of ultrasonic wave propagation in random media</title><title>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>Lasers can be used to excite and detect ultrasonic waves in a wide variety of materials. This allows the measurement of absolute particle motion without the mechanical disturbances of contacting transducers. In an ultrasound transmission experiment, the wave field is usually accessible only on the boundaries of a sample. Using optical methods, one can measure the surface wave field, in effect, within the scattering region. Here, we describe noncontacting (laser source and detector) measurements of ultrasonic wave propagation in randomly heterogeneous rock samples. By scanning the surface of the sample, we can directly visualize the complex dynamics of diffraction, multiple scattering, mode conversion, and whispering gallery modes. We will show measurements on rock samples that have similar elastic moduli and intrinsic attenuation, but different grain sizes, and hence, different scattering strengths. The intensity data are well fit by a radiative transfer model, and we use this fact to infer the scattering mean free path.</description><issn>1539-3755</issn><issn>1063-651X</issn><issn>1095-3787</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LxDAQxYMorq7-Ax6kJ29dM0mTtEdZ1g9YUETPIU0nbqUfa9KurH-9kS54mgfz3mPmR8gV0AUA5bfbzT543OFCqgXNpIT8iJwBLUTKVa6Ooxa8iFqIGTkP4ZNSznienZIZMJVLwegZWa1NQJ_YjfHGDujrHzPUfZf0LhmbwZvQd7VNvs0Ok63vt-ZjWtdd4k1X9W3SYlWbC3LiTBPw8jDn5P1-9bZ8TNfPD0_Lu3VqM1UMacHAcqkYIJaVAIHM5bLKSyFpJRx1XLCiyFCABbBlaYXLlCsoR7BWOif5nNxMvfGWrxHDoNs6WGwa02E_Bq04BwYUopFNRuv7ECE5vfV1a_xeA9V_8PRLhPeKu5WWSk_wYuj60D6W8a3_yIEW_wXj_m2S</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Scales, John A</creator><creator>Malcolm, Alison E</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030401</creationdate><title>Laser characterization of ultrasonic wave propagation in random media</title><author>Scales, John A ; Malcolm, Alison E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-921c36721eebd515e2f86d8b560d5f0f352994e51c11cbbc5f47f903e1cc6ff63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Scales, John A</creatorcontrib><creatorcontrib>Malcolm, Alison E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scales, John A</au><au>Malcolm, Alison E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser characterization of ultrasonic wave propagation in random media</atitle><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2003-04-01</date><risdate>2003</risdate><volume>67</volume><issue>4 Pt 2</issue><spage>046618</spage><epage>046618</epage><pages>046618-046618</pages><artnum>046618</artnum><issn>1539-3755</issn><issn>1063-651X</issn><eissn>1095-3787</eissn><abstract>Lasers can be used to excite and detect ultrasonic waves in a wide variety of materials. This allows the measurement of absolute particle motion without the mechanical disturbances of contacting transducers. In an ultrasound transmission experiment, the wave field is usually accessible only on the boundaries of a sample. Using optical methods, one can measure the surface wave field, in effect, within the scattering region. Here, we describe noncontacting (laser source and detector) measurements of ultrasonic wave propagation in randomly heterogeneous rock samples. By scanning the surface of the sample, we can directly visualize the complex dynamics of diffraction, multiple scattering, mode conversion, and whispering gallery modes. We will show measurements on rock samples that have similar elastic moduli and intrinsic attenuation, but different grain sizes, and hence, different scattering strengths. The intensity data are well fit by a radiative transfer model, and we use this fact to infer the scattering mean free path.</abstract><cop>United States</cop><pmid>12786520</pmid><doi>10.1103/physreve.67.046618</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2003-04, Vol.67 (4 Pt 2), p.046618-046618, Article 046618
issn 1539-3755
1063-651X
1095-3787
language eng
recordid cdi_proquest_miscellaneous_73312101
source American Physical Society Journals
title Laser characterization of ultrasonic wave propagation in random media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T21%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20characterization%20of%20ultrasonic%20wave%20propagation%20in%20random%20media&rft.jtitle=Physical%20review.%20E,%20Statistical%20physics,%20plasmas,%20fluids,%20and%20related%20interdisciplinary%20topics&rft.au=Scales,%20John%20A&rft.date=2003-04-01&rft.volume=67&rft.issue=4%20Pt%202&rft.spage=046618&rft.epage=046618&rft.pages=046618-046618&rft.artnum=046618&rft.issn=1539-3755&rft.eissn=1095-3787&rft_id=info:doi/10.1103/physreve.67.046618&rft_dat=%3Cproquest_cross%3E73312101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73312101&rft_id=info:pmid/12786520&rfr_iscdi=true