Laser characterization of ultrasonic wave propagation in random media
Lasers can be used to excite and detect ultrasonic waves in a wide variety of materials. This allows the measurement of absolute particle motion without the mechanical disturbances of contacting transducers. In an ultrasound transmission experiment, the wave field is usually accessible only on the b...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2003-04, Vol.67 (4 Pt 2), p.046618-046618, Article 046618 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 046618 |
---|---|
container_issue | 4 Pt 2 |
container_start_page | 046618 |
container_title | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics |
container_volume | 67 |
creator | Scales, John A Malcolm, Alison E |
description | Lasers can be used to excite and detect ultrasonic waves in a wide variety of materials. This allows the measurement of absolute particle motion without the mechanical disturbances of contacting transducers. In an ultrasound transmission experiment, the wave field is usually accessible only on the boundaries of a sample. Using optical methods, one can measure the surface wave field, in effect, within the scattering region. Here, we describe noncontacting (laser source and detector) measurements of ultrasonic wave propagation in randomly heterogeneous rock samples. By scanning the surface of the sample, we can directly visualize the complex dynamics of diffraction, multiple scattering, mode conversion, and whispering gallery modes. We will show measurements on rock samples that have similar elastic moduli and intrinsic attenuation, but different grain sizes, and hence, different scattering strengths. The intensity data are well fit by a radiative transfer model, and we use this fact to infer the scattering mean free path. |
doi_str_mv | 10.1103/physreve.67.046618 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73312101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73312101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-921c36721eebd515e2f86d8b560d5f0f352994e51c11cbbc5f47f903e1cc6ff63</originalsourceid><addsrcrecordid>eNpFkM1LxDAQxYMorq7-Ax6kJ29dM0mTtEdZ1g9YUETPIU0nbqUfa9KurH-9kS54mgfz3mPmR8gV0AUA5bfbzT543OFCqgXNpIT8iJwBLUTKVa6Ooxa8iFqIGTkP4ZNSznienZIZMJVLwegZWa1NQJ_YjfHGDujrHzPUfZf0LhmbwZvQd7VNvs0Ok63vt-ZjWtdd4k1X9W3SYlWbC3LiTBPw8jDn5P1-9bZ8TNfPD0_Lu3VqM1UMacHAcqkYIJaVAIHM5bLKSyFpJRx1XLCiyFCABbBlaYXLlCsoR7BWOif5nNxMvfGWrxHDoNs6WGwa02E_Bq04BwYUopFNRuv7ECE5vfV1a_xeA9V_8PRLhPeKu5WWSk_wYuj60D6W8a3_yIEW_wXj_m2S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73312101</pqid></control><display><type>article</type><title>Laser characterization of ultrasonic wave propagation in random media</title><source>American Physical Society Journals</source><creator>Scales, John A ; Malcolm, Alison E</creator><creatorcontrib>Scales, John A ; Malcolm, Alison E</creatorcontrib><description>Lasers can be used to excite and detect ultrasonic waves in a wide variety of materials. This allows the measurement of absolute particle motion without the mechanical disturbances of contacting transducers. In an ultrasound transmission experiment, the wave field is usually accessible only on the boundaries of a sample. Using optical methods, one can measure the surface wave field, in effect, within the scattering region. Here, we describe noncontacting (laser source and detector) measurements of ultrasonic wave propagation in randomly heterogeneous rock samples. By scanning the surface of the sample, we can directly visualize the complex dynamics of diffraction, multiple scattering, mode conversion, and whispering gallery modes. We will show measurements on rock samples that have similar elastic moduli and intrinsic attenuation, but different grain sizes, and hence, different scattering strengths. The intensity data are well fit by a radiative transfer model, and we use this fact to infer the scattering mean free path.</description><identifier>ISSN: 1539-3755</identifier><identifier>ISSN: 1063-651X</identifier><identifier>EISSN: 1095-3787</identifier><identifier>DOI: 10.1103/physreve.67.046618</identifier><identifier>PMID: 12786520</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2003-04, Vol.67 (4 Pt 2), p.046618-046618, Article 046618</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-921c36721eebd515e2f86d8b560d5f0f352994e51c11cbbc5f47f903e1cc6ff63</citedby><cites>FETCH-LOGICAL-c479t-921c36721eebd515e2f86d8b560d5f0f352994e51c11cbbc5f47f903e1cc6ff63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12786520$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scales, John A</creatorcontrib><creatorcontrib>Malcolm, Alison E</creatorcontrib><title>Laser characterization of ultrasonic wave propagation in random media</title><title>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>Lasers can be used to excite and detect ultrasonic waves in a wide variety of materials. This allows the measurement of absolute particle motion without the mechanical disturbances of contacting transducers. In an ultrasound transmission experiment, the wave field is usually accessible only on the boundaries of a sample. Using optical methods, one can measure the surface wave field, in effect, within the scattering region. Here, we describe noncontacting (laser source and detector) measurements of ultrasonic wave propagation in randomly heterogeneous rock samples. By scanning the surface of the sample, we can directly visualize the complex dynamics of diffraction, multiple scattering, mode conversion, and whispering gallery modes. We will show measurements on rock samples that have similar elastic moduli and intrinsic attenuation, but different grain sizes, and hence, different scattering strengths. The intensity data are well fit by a radiative transfer model, and we use this fact to infer the scattering mean free path.</description><issn>1539-3755</issn><issn>1063-651X</issn><issn>1095-3787</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LxDAQxYMorq7-Ax6kJ29dM0mTtEdZ1g9YUETPIU0nbqUfa9KurH-9kS54mgfz3mPmR8gV0AUA5bfbzT543OFCqgXNpIT8iJwBLUTKVa6Ooxa8iFqIGTkP4ZNSznienZIZMJVLwegZWa1NQJ_YjfHGDujrHzPUfZf0LhmbwZvQd7VNvs0Ok63vt-ZjWtdd4k1X9W3SYlWbC3LiTBPw8jDn5P1-9bZ8TNfPD0_Lu3VqM1UMacHAcqkYIJaVAIHM5bLKSyFpJRx1XLCiyFCABbBlaYXLlCsoR7BWOif5nNxMvfGWrxHDoNs6WGwa02E_Bq04BwYUopFNRuv7ECE5vfV1a_xeA9V_8PRLhPeKu5WWSk_wYuj60D6W8a3_yIEW_wXj_m2S</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Scales, John A</creator><creator>Malcolm, Alison E</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030401</creationdate><title>Laser characterization of ultrasonic wave propagation in random media</title><author>Scales, John A ; Malcolm, Alison E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-921c36721eebd515e2f86d8b560d5f0f352994e51c11cbbc5f47f903e1cc6ff63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Scales, John A</creatorcontrib><creatorcontrib>Malcolm, Alison E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scales, John A</au><au>Malcolm, Alison E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser characterization of ultrasonic wave propagation in random media</atitle><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2003-04-01</date><risdate>2003</risdate><volume>67</volume><issue>4 Pt 2</issue><spage>046618</spage><epage>046618</epage><pages>046618-046618</pages><artnum>046618</artnum><issn>1539-3755</issn><issn>1063-651X</issn><eissn>1095-3787</eissn><abstract>Lasers can be used to excite and detect ultrasonic waves in a wide variety of materials. This allows the measurement of absolute particle motion without the mechanical disturbances of contacting transducers. In an ultrasound transmission experiment, the wave field is usually accessible only on the boundaries of a sample. Using optical methods, one can measure the surface wave field, in effect, within the scattering region. Here, we describe noncontacting (laser source and detector) measurements of ultrasonic wave propagation in randomly heterogeneous rock samples. By scanning the surface of the sample, we can directly visualize the complex dynamics of diffraction, multiple scattering, mode conversion, and whispering gallery modes. We will show measurements on rock samples that have similar elastic moduli and intrinsic attenuation, but different grain sizes, and hence, different scattering strengths. The intensity data are well fit by a radiative transfer model, and we use this fact to infer the scattering mean free path.</abstract><cop>United States</cop><pmid>12786520</pmid><doi>10.1103/physreve.67.046618</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2003-04, Vol.67 (4 Pt 2), p.046618-046618, Article 046618 |
issn | 1539-3755 1063-651X 1095-3787 |
language | eng |
recordid | cdi_proquest_miscellaneous_73312101 |
source | American Physical Society Journals |
title | Laser characterization of ultrasonic wave propagation in random media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T21%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20characterization%20of%20ultrasonic%20wave%20propagation%20in%20random%20media&rft.jtitle=Physical%20review.%20E,%20Statistical%20physics,%20plasmas,%20fluids,%20and%20related%20interdisciplinary%20topics&rft.au=Scales,%20John%20A&rft.date=2003-04-01&rft.volume=67&rft.issue=4%20Pt%202&rft.spage=046618&rft.epage=046618&rft.pages=046618-046618&rft.artnum=046618&rft.issn=1539-3755&rft.eissn=1095-3787&rft_id=info:doi/10.1103/physreve.67.046618&rft_dat=%3Cproquest_cross%3E73312101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73312101&rft_id=info:pmid/12786520&rfr_iscdi=true |