Iron/ethylcellulose (core/shell) nanoplatform loaded with 5-fluorouracil for cancer targeting

Even though 5-fluorouracil has been demonstrated to display antitumor activity against a wide variety of cancers, high doses are needed to bring out the required therapeutic activity that could simultaneously lead to severe side effects. We hypothesized that the efficient delivery of 5-fluorouracil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2010-05, Vol.77 (1), p.111-116
Hauptverfasser: Arias, José L., López-Viota, Margarita, Delgado, Ángel V., Ruiz, Mª Adolfina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116
container_issue 1
container_start_page 111
container_title Colloids and surfaces, B, Biointerfaces
container_volume 77
creator Arias, José L.
López-Viota, Margarita
Delgado, Ángel V.
Ruiz, Mª Adolfina
description Even though 5-fluorouracil has been demonstrated to display antitumor activity against a wide variety of cancers, high doses are needed to bring out the required therapeutic activity that could simultaneously lead to severe side effects. We hypothesized that the efficient delivery of 5-fluorouracil to tumors using a magnetic nanoplatform could reduce the dose required to obtain sufficient anticancer response. Thus, we have formulated a 5-fluorouracil-loaded magnetic nanomedicine consisting of a magnetic core (iron) and a biocompatible polymeric shell (ethylcellulose). These core/shell nanoparticles were synthesized by an emulsion solvent evaporation process, and 5-fluorouracil loading was assayed by surface incorporation onto the preformed nanocomposites, and by drug incorporation into the magnetic colloid. The contributions of both the surface and the polymeric network to the overall drug loading were investigated by means of optical absorbance and electrophoretic mobility determinations. 5-Fluorouracil entrapment into the polymeric matrix yielded a higher drug loading and a slower drug release profile as compared with drug adsorption. These preliminary results suggest the potential of this stimuli-sensitive drug carrier for cancer targeting.
doi_str_mv 10.1016/j.colsurfb.2010.01.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733115077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776510000706</els_id><sourcerecordid>733115077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-917a725ab49ce1f41205dc14f5f7ef1f0ff5eb01511999013ef4ef3bf24ae5fe3</originalsourceid><addsrcrecordid>eNqFkE9PwzAMxSMEYmPwFabegEO3uGkaegMh_kmTuMARRWnqsExZM5IWxLcn0wZXTpbs9-znHyFToDOgUM1XM-1dHIJpZgVNTQozyugBGcOVYHnJKnFIxrQuRC5ExUfkJMYVpbQoQRyTUbJwVnM-Jm9PwXdz7JffTqNzg_MRswvtA87jMjUus051fuNUb3xYZ86rFtvsy_bLjOfGDT74IShtXZbmmVadxpD1Krxjb7v3U3JklIt4tq8T8np_93L7mC-eH55ubxa5TkH7vAahRMFVU9YawZRQUN5qKA03Ag0YagzHJmUGqOuaAkNTomGNKUqF3CCbkPPd3k3wHwPGXq5t3P6jOvRDlIIxAE6FSMpqp9TBxxjQyE2waxW-JVC5JStX8pes3JKVFGQim4zT_YmhWWP7Z_tFmQTXOwGmRz8tBhm1xcSjtQF1L1tv_7vxA7hpj0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733115077</pqid></control><display><type>article</type><title>Iron/ethylcellulose (core/shell) nanoplatform loaded with 5-fluorouracil for cancer targeting</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Arias, José L. ; López-Viota, Margarita ; Delgado, Ángel V. ; Ruiz, Mª Adolfina</creator><creatorcontrib>Arias, José L. ; López-Viota, Margarita ; Delgado, Ángel V. ; Ruiz, Mª Adolfina</creatorcontrib><description>Even though 5-fluorouracil has been demonstrated to display antitumor activity against a wide variety of cancers, high doses are needed to bring out the required therapeutic activity that could simultaneously lead to severe side effects. We hypothesized that the efficient delivery of 5-fluorouracil to tumors using a magnetic nanoplatform could reduce the dose required to obtain sufficient anticancer response. Thus, we have formulated a 5-fluorouracil-loaded magnetic nanomedicine consisting of a magnetic core (iron) and a biocompatible polymeric shell (ethylcellulose). These core/shell nanoparticles were synthesized by an emulsion solvent evaporation process, and 5-fluorouracil loading was assayed by surface incorporation onto the preformed nanocomposites, and by drug incorporation into the magnetic colloid. The contributions of both the surface and the polymeric network to the overall drug loading were investigated by means of optical absorbance and electrophoretic mobility determinations. 5-Fluorouracil entrapment into the polymeric matrix yielded a higher drug loading and a slower drug release profile as compared with drug adsorption. These preliminary results suggest the potential of this stimuli-sensitive drug carrier for cancer targeting.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2010.01.030</identifier><identifier>PMID: 20153955</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>5-Fluorouracil ; Antimetabolites, Antineoplastic - administration &amp; dosage ; Antimetabolites, Antineoplastic - chemistry ; Antimetabolites, Antineoplastic - therapeutic use ; Biocompatible Materials ; Cellulose - analogs &amp; derivatives ; Cellulose - chemistry ; Drug Delivery Systems ; Drug targeting ; Ethylcellulose ; Fluorouracil - administration &amp; dosage ; Fluorouracil - chemistry ; Fluorouracil - therapeutic use ; Iron ; Iron - chemistry ; Magnetic core/shell colloidal particles ; Nanostructures ; Neoplasms - drug therapy ; Stimuli-sensitive drug carriers</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2010-05, Vol.77 (1), p.111-116</ispartof><rights>2010 Elsevier B.V.</rights><rights>2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-917a725ab49ce1f41205dc14f5f7ef1f0ff5eb01511999013ef4ef3bf24ae5fe3</citedby><cites>FETCH-LOGICAL-c367t-917a725ab49ce1f41205dc14f5f7ef1f0ff5eb01511999013ef4ef3bf24ae5fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.colsurfb.2010.01.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20153955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arias, José L.</creatorcontrib><creatorcontrib>López-Viota, Margarita</creatorcontrib><creatorcontrib>Delgado, Ángel V.</creatorcontrib><creatorcontrib>Ruiz, Mª Adolfina</creatorcontrib><title>Iron/ethylcellulose (core/shell) nanoplatform loaded with 5-fluorouracil for cancer targeting</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>Even though 5-fluorouracil has been demonstrated to display antitumor activity against a wide variety of cancers, high doses are needed to bring out the required therapeutic activity that could simultaneously lead to severe side effects. We hypothesized that the efficient delivery of 5-fluorouracil to tumors using a magnetic nanoplatform could reduce the dose required to obtain sufficient anticancer response. Thus, we have formulated a 5-fluorouracil-loaded magnetic nanomedicine consisting of a magnetic core (iron) and a biocompatible polymeric shell (ethylcellulose). These core/shell nanoparticles were synthesized by an emulsion solvent evaporation process, and 5-fluorouracil loading was assayed by surface incorporation onto the preformed nanocomposites, and by drug incorporation into the magnetic colloid. The contributions of both the surface and the polymeric network to the overall drug loading were investigated by means of optical absorbance and electrophoretic mobility determinations. 5-Fluorouracil entrapment into the polymeric matrix yielded a higher drug loading and a slower drug release profile as compared with drug adsorption. These preliminary results suggest the potential of this stimuli-sensitive drug carrier for cancer targeting.</description><subject>5-Fluorouracil</subject><subject>Antimetabolites, Antineoplastic - administration &amp; dosage</subject><subject>Antimetabolites, Antineoplastic - chemistry</subject><subject>Antimetabolites, Antineoplastic - therapeutic use</subject><subject>Biocompatible Materials</subject><subject>Cellulose - analogs &amp; derivatives</subject><subject>Cellulose - chemistry</subject><subject>Drug Delivery Systems</subject><subject>Drug targeting</subject><subject>Ethylcellulose</subject><subject>Fluorouracil - administration &amp; dosage</subject><subject>Fluorouracil - chemistry</subject><subject>Fluorouracil - therapeutic use</subject><subject>Iron</subject><subject>Iron - chemistry</subject><subject>Magnetic core/shell colloidal particles</subject><subject>Nanostructures</subject><subject>Neoplasms - drug therapy</subject><subject>Stimuli-sensitive drug carriers</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE9PwzAMxSMEYmPwFabegEO3uGkaegMh_kmTuMARRWnqsExZM5IWxLcn0wZXTpbs9-znHyFToDOgUM1XM-1dHIJpZgVNTQozyugBGcOVYHnJKnFIxrQuRC5ExUfkJMYVpbQoQRyTUbJwVnM-Jm9PwXdz7JffTqNzg_MRswvtA87jMjUus051fuNUb3xYZ86rFtvsy_bLjOfGDT74IShtXZbmmVadxpD1Krxjb7v3U3JklIt4tq8T8np_93L7mC-eH55ubxa5TkH7vAahRMFVU9YawZRQUN5qKA03Ag0YagzHJmUGqOuaAkNTomGNKUqF3CCbkPPd3k3wHwPGXq5t3P6jOvRDlIIxAE6FSMpqp9TBxxjQyE2waxW-JVC5JStX8pes3JKVFGQim4zT_YmhWWP7Z_tFmQTXOwGmRz8tBhm1xcSjtQF1L1tv_7vxA7hpj0M</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Arias, José L.</creator><creator>López-Viota, Margarita</creator><creator>Delgado, Ángel V.</creator><creator>Ruiz, Mª Adolfina</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100501</creationdate><title>Iron/ethylcellulose (core/shell) nanoplatform loaded with 5-fluorouracil for cancer targeting</title><author>Arias, José L. ; López-Viota, Margarita ; Delgado, Ángel V. ; Ruiz, Mª Adolfina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-917a725ab49ce1f41205dc14f5f7ef1f0ff5eb01511999013ef4ef3bf24ae5fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>5-Fluorouracil</topic><topic>Antimetabolites, Antineoplastic - administration &amp; dosage</topic><topic>Antimetabolites, Antineoplastic - chemistry</topic><topic>Antimetabolites, Antineoplastic - therapeutic use</topic><topic>Biocompatible Materials</topic><topic>Cellulose - analogs &amp; derivatives</topic><topic>Cellulose - chemistry</topic><topic>Drug Delivery Systems</topic><topic>Drug targeting</topic><topic>Ethylcellulose</topic><topic>Fluorouracil - administration &amp; dosage</topic><topic>Fluorouracil - chemistry</topic><topic>Fluorouracil - therapeutic use</topic><topic>Iron</topic><topic>Iron - chemistry</topic><topic>Magnetic core/shell colloidal particles</topic><topic>Nanostructures</topic><topic>Neoplasms - drug therapy</topic><topic>Stimuli-sensitive drug carriers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arias, José L.</creatorcontrib><creatorcontrib>López-Viota, Margarita</creatorcontrib><creatorcontrib>Delgado, Ángel V.</creatorcontrib><creatorcontrib>Ruiz, Mª Adolfina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arias, José L.</au><au>López-Viota, Margarita</au><au>Delgado, Ángel V.</au><au>Ruiz, Mª Adolfina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron/ethylcellulose (core/shell) nanoplatform loaded with 5-fluorouracil for cancer targeting</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2010-05-01</date><risdate>2010</risdate><volume>77</volume><issue>1</issue><spage>111</spage><epage>116</epage><pages>111-116</pages><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>Even though 5-fluorouracil has been demonstrated to display antitumor activity against a wide variety of cancers, high doses are needed to bring out the required therapeutic activity that could simultaneously lead to severe side effects. We hypothesized that the efficient delivery of 5-fluorouracil to tumors using a magnetic nanoplatform could reduce the dose required to obtain sufficient anticancer response. Thus, we have formulated a 5-fluorouracil-loaded magnetic nanomedicine consisting of a magnetic core (iron) and a biocompatible polymeric shell (ethylcellulose). These core/shell nanoparticles were synthesized by an emulsion solvent evaporation process, and 5-fluorouracil loading was assayed by surface incorporation onto the preformed nanocomposites, and by drug incorporation into the magnetic colloid. The contributions of both the surface and the polymeric network to the overall drug loading were investigated by means of optical absorbance and electrophoretic mobility determinations. 5-Fluorouracil entrapment into the polymeric matrix yielded a higher drug loading and a slower drug release profile as compared with drug adsorption. These preliminary results suggest the potential of this stimuli-sensitive drug carrier for cancer targeting.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>20153955</pmid><doi>10.1016/j.colsurfb.2010.01.030</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-7765
ispartof Colloids and surfaces, B, Biointerfaces, 2010-05, Vol.77 (1), p.111-116
issn 0927-7765
1873-4367
language eng
recordid cdi_proquest_miscellaneous_733115077
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects 5-Fluorouracil
Antimetabolites, Antineoplastic - administration & dosage
Antimetabolites, Antineoplastic - chemistry
Antimetabolites, Antineoplastic - therapeutic use
Biocompatible Materials
Cellulose - analogs & derivatives
Cellulose - chemistry
Drug Delivery Systems
Drug targeting
Ethylcellulose
Fluorouracil - administration & dosage
Fluorouracil - chemistry
Fluorouracil - therapeutic use
Iron
Iron - chemistry
Magnetic core/shell colloidal particles
Nanostructures
Neoplasms - drug therapy
Stimuli-sensitive drug carriers
title Iron/ethylcellulose (core/shell) nanoplatform loaded with 5-fluorouracil for cancer targeting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A35%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron/ethylcellulose%20(core/shell)%20nanoplatform%20loaded%20with%205-fluorouracil%20for%20cancer%20targeting&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Arias,%20Jos%C3%A9%20L.&rft.date=2010-05-01&rft.volume=77&rft.issue=1&rft.spage=111&rft.epage=116&rft.pages=111-116&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2010.01.030&rft_dat=%3Cproquest_cross%3E733115077%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733115077&rft_id=info:pmid/20153955&rft_els_id=S0927776510000706&rfr_iscdi=true