Possible Mechanism by which Stress Accelerates Growth of Virally Derived Tumors

Stress accelerates the growth of certain types of tumors. Here we report a possible metabolic mechanism underlying this phenomenon. Some early features of transformation include increased number of glucose transporters and greatly enhanced rates of glucose uptake; this adaptation accommodates the va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1992-11, Vol.89 (22), p.11084-11087
Hauptverfasser: Romero, L. Michael, Raley-Susman, Kathleen M., Redish, Deborah M., Brooke, Sheila M., Horner, Heidi C., Sapolsky, Robert M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11087
container_issue 22
container_start_page 11084
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 89
creator Romero, L. Michael
Raley-Susman, Kathleen M.
Redish, Deborah M.
Brooke, Sheila M.
Horner, Heidi C.
Sapolsky, Robert M.
description Stress accelerates the growth of certain types of tumors. Here we report a possible metabolic mechanism underlying this phenomenon. Some early features of transformation include increased number of glucose transporters and greatly enhanced rates of glucose uptake; this adaptation accommodates the vast energy demands needed for neoplastic growth. In contrast, glucocorticoids, a class of steroid hormones secreted during stress, inhibit glucose transport in various tissues; this is one route by which circulating glucose concentrations are raised during stress. We reasoned that should transformed cells become resistant to this inhibitory action of glucocorticoids, such cells would gain preferential access to these elevated concentrations of glucose. In agreement with this, we observed that Fujinami sarcoma virus-transformed fibroblasts became resistant to this glucocorticoid action both in vitro and in the rat. As a result, under conditions where glucocorticoids exerted catabolic effects upon nontransformed fibroblasts (inhibition of metabolism and ATP concentrations), the opposite occurred in the virally transformed cells. We observe that this glucocorticoid resistance upon transformation cannot be explained by depletion of glucocorticoid receptors; previous studies have suggested that transformation causes an alteration in trafficking of such receptors. Because of this resistance of transformed fibroblasts to the inhibitory effects of glucocorticoids upon glucose transport, glucose stores throughout the body are, in effect, preferentially shunted to such tumors during stress.
doi_str_mv 10.1073/pnas.89.22.11084
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_73310145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2362057</jstor_id><sourcerecordid>2362057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-d7b2c76f72f8d15cb987066a5dd2591ee825e639eb69d1a550d29017efdc9c743</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EKkvhzgGEhSrEJcv4K7YlLlULBamoSBSuluM4xKtssrWTlv3v8XaXpXCAkw_v9_xm5iH0lMCcgGRvVr1Nc6XnlM4JAcXvoRkBTYqSa7iPZgBUFopT_hA9SmkBAFooOEAHhDPFiJqhi89DSqHqPP7kXWv7kJa4WuObNrgWfxmjTwkfO-c7H-3oEz6Lw83Y4qHB30K0XbfGpz6Ga1_jy2k5xPQYPWhsl_yT3XuIvr5_d3nyoTi_OPt4cnxeOCH4WNSyok6WjaSNqolwlVYSytKKuqZCE-8VFb5k2lelrokVAmqqgUjf1E47ydkherv9dzVVS1873495HLOKYWnj2gw2mD-VPrTm-3BtBHClsv3Vzh6Hq8mn0SxDylt2tvfDlIxkjADh4r8gKZnQAkgGX_4FLoYp9vkGhgKhishSZgi2kIv57NE3-4EJmE2hZlOoUdpQam4LzZbndxf9bdg2mPWjnW6Ts10Tbe9C2mNcEMZvk1_vsE3AL_VOkGmmrhv9jzGjL_6NZuLZllikcYh7hLKSgpDsJyuTyxs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201281767</pqid></control><display><type>article</type><title>Possible Mechanism by which Stress Accelerates Growth of Virally Derived Tumors</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Romero, L. Michael ; Raley-Susman, Kathleen M. ; Redish, Deborah M. ; Brooke, Sheila M. ; Horner, Heidi C. ; Sapolsky, Robert M.</creator><creatorcontrib>Romero, L. Michael ; Raley-Susman, Kathleen M. ; Redish, Deborah M. ; Brooke, Sheila M. ; Horner, Heidi C. ; Sapolsky, Robert M.</creatorcontrib><description>Stress accelerates the growth of certain types of tumors. Here we report a possible metabolic mechanism underlying this phenomenon. Some early features of transformation include increased number of glucose transporters and greatly enhanced rates of glucose uptake; this adaptation accommodates the vast energy demands needed for neoplastic growth. In contrast, glucocorticoids, a class of steroid hormones secreted during stress, inhibit glucose transport in various tissues; this is one route by which circulating glucose concentrations are raised during stress. We reasoned that should transformed cells become resistant to this inhibitory action of glucocorticoids, such cells would gain preferential access to these elevated concentrations of glucose. In agreement with this, we observed that Fujinami sarcoma virus-transformed fibroblasts became resistant to this glucocorticoid action both in vitro and in the rat. As a result, under conditions where glucocorticoids exerted catabolic effects upon nontransformed fibroblasts (inhibition of metabolism and ATP concentrations), the opposite occurred in the virally transformed cells. We observe that this glucocorticoid resistance upon transformation cannot be explained by depletion of glucocorticoid receptors; previous studies have suggested that transformation causes an alteration in trafficking of such receptors. Because of this resistance of transformed fibroblasts to the inhibitory effects of glucocorticoids upon glucose transport, glucose stores throughout the body are, in effect, preferentially shunted to such tumors during stress.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.89.22.11084</identifier><identifier>PMID: 1438318</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Adenosine Triphosphate - metabolism ; Adrenalectomy ; Anatomy &amp; physiology ; Animals ; Biological and medical sciences ; Biological Transport ; Carbon Radioisotopes ; Cell growth ; Cell Transformation, Neoplastic ; Cellular metabolism ; Corticosterone ; Deoxyglucose - metabolism ; Dexamethasone - pharmacology ; effects on ; Energy metabolism ; Fibroblasts ; Fibroblasts - drug effects ; Fibroblasts - metabolism ; General aspects (metabolism, cell proliferation, established cell line...) ; Glucocorticoids ; glucose ; Male ; Medical sciences ; Natural killer cells ; Neoplastic cell transformation ; Rats ; Rats, Sprague-Dawley ; Retroviridae - genetics ; Retroviridae - pathogenicity ; Sarcoma, Experimental - metabolism ; Sarcoma, Experimental - microbiology ; Sarcoma, Experimental - pathology ; Stress ; Stress, Physiological - physiopathology ; Tissue samples ; transport ; Tumor cell ; Tumors ; tumours</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1992-11, Vol.89 (22), p.11084-11087</ispartof><rights>Copyright 1992 The National Academy of Sciences of the United States of America</rights><rights>1993 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Nov 15, 1992</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-d7b2c76f72f8d15cb987066a5dd2591ee825e639eb69d1a550d29017efdc9c743</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/89/22.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2362057$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2362057$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4513467$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1438318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Romero, L. Michael</creatorcontrib><creatorcontrib>Raley-Susman, Kathleen M.</creatorcontrib><creatorcontrib>Redish, Deborah M.</creatorcontrib><creatorcontrib>Brooke, Sheila M.</creatorcontrib><creatorcontrib>Horner, Heidi C.</creatorcontrib><creatorcontrib>Sapolsky, Robert M.</creatorcontrib><title>Possible Mechanism by which Stress Accelerates Growth of Virally Derived Tumors</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Stress accelerates the growth of certain types of tumors. Here we report a possible metabolic mechanism underlying this phenomenon. Some early features of transformation include increased number of glucose transporters and greatly enhanced rates of glucose uptake; this adaptation accommodates the vast energy demands needed for neoplastic growth. In contrast, glucocorticoids, a class of steroid hormones secreted during stress, inhibit glucose transport in various tissues; this is one route by which circulating glucose concentrations are raised during stress. We reasoned that should transformed cells become resistant to this inhibitory action of glucocorticoids, such cells would gain preferential access to these elevated concentrations of glucose. In agreement with this, we observed that Fujinami sarcoma virus-transformed fibroblasts became resistant to this glucocorticoid action both in vitro and in the rat. As a result, under conditions where glucocorticoids exerted catabolic effects upon nontransformed fibroblasts (inhibition of metabolism and ATP concentrations), the opposite occurred in the virally transformed cells. We observe that this glucocorticoid resistance upon transformation cannot be explained by depletion of glucocorticoid receptors; previous studies have suggested that transformation causes an alteration in trafficking of such receptors. Because of this resistance of transformed fibroblasts to the inhibitory effects of glucocorticoids upon glucose transport, glucose stores throughout the body are, in effect, preferentially shunted to such tumors during stress.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Adrenalectomy</subject><subject>Anatomy &amp; physiology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biological Transport</subject><subject>Carbon Radioisotopes</subject><subject>Cell growth</subject><subject>Cell Transformation, Neoplastic</subject><subject>Cellular metabolism</subject><subject>Corticosterone</subject><subject>Deoxyglucose - metabolism</subject><subject>Dexamethasone - pharmacology</subject><subject>effects on</subject><subject>Energy metabolism</subject><subject>Fibroblasts</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - metabolism</subject><subject>General aspects (metabolism, cell proliferation, established cell line...)</subject><subject>Glucocorticoids</subject><subject>glucose</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Natural killer cells</subject><subject>Neoplastic cell transformation</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Retroviridae - genetics</subject><subject>Retroviridae - pathogenicity</subject><subject>Sarcoma, Experimental - metabolism</subject><subject>Sarcoma, Experimental - microbiology</subject><subject>Sarcoma, Experimental - pathology</subject><subject>Stress</subject><subject>Stress, Physiological - physiopathology</subject><subject>Tissue samples</subject><subject>transport</subject><subject>Tumor cell</subject><subject>Tumors</subject><subject>tumours</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EKkvhzgGEhSrEJcv4K7YlLlULBamoSBSuluM4xKtssrWTlv3v8XaXpXCAkw_v9_xm5iH0lMCcgGRvVr1Nc6XnlM4JAcXvoRkBTYqSa7iPZgBUFopT_hA9SmkBAFooOEAHhDPFiJqhi89DSqHqPP7kXWv7kJa4WuObNrgWfxmjTwkfO-c7H-3oEz6Lw83Y4qHB30K0XbfGpz6Ga1_jy2k5xPQYPWhsl_yT3XuIvr5_d3nyoTi_OPt4cnxeOCH4WNSyok6WjaSNqolwlVYSytKKuqZCE-8VFb5k2lelrokVAmqqgUjf1E47ydkherv9dzVVS1873495HLOKYWnj2gw2mD-VPrTm-3BtBHClsv3Vzh6Hq8mn0SxDylt2tvfDlIxkjADh4r8gKZnQAkgGX_4FLoYp9vkGhgKhishSZgi2kIv57NE3-4EJmE2hZlOoUdpQam4LzZbndxf9bdg2mPWjnW6Ts10Tbe9C2mNcEMZvk1_vsE3AL_VOkGmmrhv9jzGjL_6NZuLZllikcYh7hLKSgpDsJyuTyxs</recordid><startdate>19921115</startdate><enddate>19921115</enddate><creator>Romero, L. Michael</creator><creator>Raley-Susman, Kathleen M.</creator><creator>Redish, Deborah M.</creator><creator>Brooke, Sheila M.</creator><creator>Horner, Heidi C.</creator><creator>Sapolsky, Robert M.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>M7Z</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19921115</creationdate><title>Possible Mechanism by which Stress Accelerates Growth of Virally Derived Tumors</title><author>Romero, L. Michael ; Raley-Susman, Kathleen M. ; Redish, Deborah M. ; Brooke, Sheila M. ; Horner, Heidi C. ; Sapolsky, Robert M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-d7b2c76f72f8d15cb987066a5dd2591ee825e639eb69d1a550d29017efdc9c743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Adrenalectomy</topic><topic>Anatomy &amp; physiology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biological Transport</topic><topic>Carbon Radioisotopes</topic><topic>Cell growth</topic><topic>Cell Transformation, Neoplastic</topic><topic>Cellular metabolism</topic><topic>Corticosterone</topic><topic>Deoxyglucose - metabolism</topic><topic>Dexamethasone - pharmacology</topic><topic>effects on</topic><topic>Energy metabolism</topic><topic>Fibroblasts</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - metabolism</topic><topic>General aspects (metabolism, cell proliferation, established cell line...)</topic><topic>Glucocorticoids</topic><topic>glucose</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Natural killer cells</topic><topic>Neoplastic cell transformation</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Retroviridae - genetics</topic><topic>Retroviridae - pathogenicity</topic><topic>Sarcoma, Experimental - metabolism</topic><topic>Sarcoma, Experimental - microbiology</topic><topic>Sarcoma, Experimental - pathology</topic><topic>Stress</topic><topic>Stress, Physiological - physiopathology</topic><topic>Tissue samples</topic><topic>transport</topic><topic>Tumor cell</topic><topic>Tumors</topic><topic>tumours</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romero, L. Michael</creatorcontrib><creatorcontrib>Raley-Susman, Kathleen M.</creatorcontrib><creatorcontrib>Redish, Deborah M.</creatorcontrib><creatorcontrib>Brooke, Sheila M.</creatorcontrib><creatorcontrib>Horner, Heidi C.</creatorcontrib><creatorcontrib>Sapolsky, Robert M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biochemistry Abstracts 1</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romero, L. Michael</au><au>Raley-Susman, Kathleen M.</au><au>Redish, Deborah M.</au><au>Brooke, Sheila M.</au><au>Horner, Heidi C.</au><au>Sapolsky, Robert M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Possible Mechanism by which Stress Accelerates Growth of Virally Derived Tumors</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1992-11-15</date><risdate>1992</risdate><volume>89</volume><issue>22</issue><spage>11084</spage><epage>11087</epage><pages>11084-11087</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>Stress accelerates the growth of certain types of tumors. Here we report a possible metabolic mechanism underlying this phenomenon. Some early features of transformation include increased number of glucose transporters and greatly enhanced rates of glucose uptake; this adaptation accommodates the vast energy demands needed for neoplastic growth. In contrast, glucocorticoids, a class of steroid hormones secreted during stress, inhibit glucose transport in various tissues; this is one route by which circulating glucose concentrations are raised during stress. We reasoned that should transformed cells become resistant to this inhibitory action of glucocorticoids, such cells would gain preferential access to these elevated concentrations of glucose. In agreement with this, we observed that Fujinami sarcoma virus-transformed fibroblasts became resistant to this glucocorticoid action both in vitro and in the rat. As a result, under conditions where glucocorticoids exerted catabolic effects upon nontransformed fibroblasts (inhibition of metabolism and ATP concentrations), the opposite occurred in the virally transformed cells. We observe that this glucocorticoid resistance upon transformation cannot be explained by depletion of glucocorticoid receptors; previous studies have suggested that transformation causes an alteration in trafficking of such receptors. Because of this resistance of transformed fibroblasts to the inhibitory effects of glucocorticoids upon glucose transport, glucose stores throughout the body are, in effect, preferentially shunted to such tumors during stress.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>1438318</pmid><doi>10.1073/pnas.89.22.11084</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1992-11, Vol.89 (22), p.11084-11087
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_73310145
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adenosine Triphosphate - metabolism
Adrenalectomy
Anatomy & physiology
Animals
Biological and medical sciences
Biological Transport
Carbon Radioisotopes
Cell growth
Cell Transformation, Neoplastic
Cellular metabolism
Corticosterone
Deoxyglucose - metabolism
Dexamethasone - pharmacology
effects on
Energy metabolism
Fibroblasts
Fibroblasts - drug effects
Fibroblasts - metabolism
General aspects (metabolism, cell proliferation, established cell line...)
Glucocorticoids
glucose
Male
Medical sciences
Natural killer cells
Neoplastic cell transformation
Rats
Rats, Sprague-Dawley
Retroviridae - genetics
Retroviridae - pathogenicity
Sarcoma, Experimental - metabolism
Sarcoma, Experimental - microbiology
Sarcoma, Experimental - pathology
Stress
Stress, Physiological - physiopathology
Tissue samples
transport
Tumor cell
Tumors
tumours
title Possible Mechanism by which Stress Accelerates Growth of Virally Derived Tumors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A15%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Possible%20Mechanism%20by%20which%20Stress%20Accelerates%20Growth%20of%20Virally%20Derived%20Tumors&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Romero,%20L.%20Michael&rft.date=1992-11-15&rft.volume=89&rft.issue=22&rft.spage=11084&rft.epage=11087&rft.pages=11084-11087&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.89.22.11084&rft_dat=%3Cjstor_proqu%3E2362057%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201281767&rft_id=info:pmid/1438318&rft_jstor_id=2362057&rfr_iscdi=true