Dynamic Mapping of the Human Visual Cortex by High-Speed Magnetic Resonance Imaging

We report the use of high-speed magnetic resonance imaging to follow the changes in image intensity in the human visual cortex during stimulation by a flashing checkerboard stimulus. Measurements were made in a 2.1-T, 1-m-diameter magnet, part of a Bruker Biospec spectrometer that we had programmed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1992-11, Vol.89 (22), p.11069-11073
Hauptverfasser: Blamire, Andrew M., Ogawa, Seiji, Ugurbil, Kamil, Rothman, Douglas, McCarthy, Gregory, Ellermann, Jutta M., Hyder, Fahmeed, Rattner, Zachary, Schulman, Robert G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11073
container_issue 22
container_start_page 11069
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 89
creator Blamire, Andrew M.
Ogawa, Seiji
Ugurbil, Kamil
Rothman, Douglas
McCarthy, Gregory
Ellermann, Jutta M.
Hyder, Fahmeed
Rattner, Zachary
Schulman, Robert G.
description We report the use of high-speed magnetic resonance imaging to follow the changes in image intensity in the human visual cortex during stimulation by a flashing checkerboard stimulus. Measurements were made in a 2.1-T, 1-m-diameter magnet, part of a Bruker Biospec spectrometer that we had programmed to do echo-planar imaging. A 15-cm-diameter surface coil was used to transmit and receive signals. Images were acquired during periods of stimulation from 2 s to 180 s. Images were acquired in 65.5 ms in a 10-mm slice with in-plane voxel size of 6 x 3 mm. Repetition time (TR) was generally 2 s, although for the long flashing periods, TR= 8 s was used. Voxels were located onto an inversion recovery image taken with 2 x 2 mm in-plane resolution. Image intensity increased after onset of the stimulus. The mean change in signal relative to the prestimulation level (ΔS/ S) was 9.7% (SD = 2.8%, n = 20) with an echo time of 70 ms. Irrespective of the period of stimulation, the increase in magnetic resonance signal intensity was delayed relative to the stimulus. The mean delay measured from the start of stimulation for each protocol was as follows: 2-s stimulation, delay = 3.5 s (SD = 0.5 s, n = 10) (the delay exceeds stimulus duration); 20- to 24-s stimulation, delay = 5 s (SD = 2 s, n = 20).
doi_str_mv 10.1073/pnas.89.22.11069
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_73304425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2362054</jstor_id><sourcerecordid>2362054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c649t-3f08daf5139214cc662167f356414ac895f5f546f52c2903ef67f616ebb1a07f3</originalsourceid><addsrcrecordid>eNqFkUuP0zAUhS0EGsrAngWICCHEJuX6mVhig8qjIw1CYoCt5bp2miqxM3aC6L_HpaUMLEBeeHG-c18HoYcY5hgq-nLwOs1rOSdkjjEIeQvNMEhcCibhNpoBkKqsGWF30b2UtgAgeQ1n6AwzWlNczdDVm53XfWuKD3oYWt8UwRXjxhbLqde--NqmSXfFIsTRfi9Wu2LZNpvyarB2nQ2Nt2N2frIpeO2NLS563eQa99Edp7tkHxz_c_Tl3dvPi2V5-fH9xeL1ZWnyeGNJHdRr7TimkmBmjBAEi8pRLhhm2tSSu_yYcJwYIoFal1WBhV2tsIYMnqNXh7rDtOrt2lg_Rt2pIba9jjsVdKv-VHy7UU34pjiwmmf786M9huvJplH1bTK267S3YUqqohQYI_8HsWCkwrLK4NO_wG2Yos83UAQwEZRRyBAcIBNDStG608AY1D5UtQ9V1VIRon6Gmi2Pby7623BIMevPjrpORncu5jTadMIYz63lfo8XR2zf4Jd6o5FyU9flpMeMPvk3molHB2KbxhBPCKGCAGf0B54bywU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201263430</pqid></control><display><type>article</type><title>Dynamic Mapping of the Human Visual Cortex by High-Speed Magnetic Resonance Imaging</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Blamire, Andrew M. ; Ogawa, Seiji ; Ugurbil, Kamil ; Rothman, Douglas ; McCarthy, Gregory ; Ellermann, Jutta M. ; Hyder, Fahmeed ; Rattner, Zachary ; Schulman, Robert G.</creator><creatorcontrib>Blamire, Andrew M. ; Ogawa, Seiji ; Ugurbil, Kamil ; Rothman, Douglas ; McCarthy, Gregory ; Ellermann, Jutta M. ; Hyder, Fahmeed ; Rattner, Zachary ; Schulman, Robert G.</creatorcontrib><description>We report the use of high-speed magnetic resonance imaging to follow the changes in image intensity in the human visual cortex during stimulation by a flashing checkerboard stimulus. Measurements were made in a 2.1-T, 1-m-diameter magnet, part of a Bruker Biospec spectrometer that we had programmed to do echo-planar imaging. A 15-cm-diameter surface coil was used to transmit and receive signals. Images were acquired during periods of stimulation from 2 s to 180 s. Images were acquired in 65.5 ms in a 10-mm slice with in-plane voxel size of 6 x 3 mm. Repetition time (TR) was generally 2 s, although for the long flashing periods, TR= 8 s was used. Voxels were located onto an inversion recovery image taken with 2 x 2 mm in-plane resolution. Image intensity increased after onset of the stimulus. The mean change in signal relative to the prestimulation level (ΔS/ S) was 9.7% (SD = 2.8%, n = 20) with an echo time of 70 ms. Irrespective of the period of stimulation, the increase in magnetic resonance signal intensity was delayed relative to the stimulus. The mean delay measured from the start of stimulation for each protocol was as follows: 2-s stimulation, delay = 3.5 s (SD = 0.5 s, n = 10) (the delay exceeds stimulus duration); 20- to 24-s stimulation, delay = 5 s (SD = 2 s, n = 20).</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.89.22.11069</identifier><identifier>PMID: 1438317</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Biological and medical sciences ; Brain ; Brain Mapping ; Capillaries ; Eye and associated structures. Visual pathways and centers. Vision ; Fundamental and applied biological sciences. Psychology ; Heart rate ; Hemoglobins ; Humans ; Imaging ; Magnetic resonance ; Magnetic Resonance Imaging - methods ; Magnets ; Mathematics ; Models, Theoretical ; Neurology ; NMR ; Nuclear magnetic resonance ; Photic Stimulation ; Pixels ; Propagation delay ; Reference Values ; Signal noise ; Supine Position ; Time Factors ; Vertebrates: nervous system and sense organs ; Visual cortex ; Visual Cortex - anatomy &amp; histology ; Visual Cortex - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1992-11, Vol.89 (22), p.11069-11073</ispartof><rights>Copyright 1992 The National Academy of Sciences of the United States of America</rights><rights>1993 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Nov 15, 1992</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c649t-3f08daf5139214cc662167f356414ac895f5f546f52c2903ef67f616ebb1a07f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/89/22.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2362054$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2362054$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4526395$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1438317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blamire, Andrew M.</creatorcontrib><creatorcontrib>Ogawa, Seiji</creatorcontrib><creatorcontrib>Ugurbil, Kamil</creatorcontrib><creatorcontrib>Rothman, Douglas</creatorcontrib><creatorcontrib>McCarthy, Gregory</creatorcontrib><creatorcontrib>Ellermann, Jutta M.</creatorcontrib><creatorcontrib>Hyder, Fahmeed</creatorcontrib><creatorcontrib>Rattner, Zachary</creatorcontrib><creatorcontrib>Schulman, Robert G.</creatorcontrib><title>Dynamic Mapping of the Human Visual Cortex by High-Speed Magnetic Resonance Imaging</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We report the use of high-speed magnetic resonance imaging to follow the changes in image intensity in the human visual cortex during stimulation by a flashing checkerboard stimulus. Measurements were made in a 2.1-T, 1-m-diameter magnet, part of a Bruker Biospec spectrometer that we had programmed to do echo-planar imaging. A 15-cm-diameter surface coil was used to transmit and receive signals. Images were acquired during periods of stimulation from 2 s to 180 s. Images were acquired in 65.5 ms in a 10-mm slice with in-plane voxel size of 6 x 3 mm. Repetition time (TR) was generally 2 s, although for the long flashing periods, TR= 8 s was used. Voxels were located onto an inversion recovery image taken with 2 x 2 mm in-plane resolution. Image intensity increased after onset of the stimulus. The mean change in signal relative to the prestimulation level (ΔS/ S) was 9.7% (SD = 2.8%, n = 20) with an echo time of 70 ms. Irrespective of the period of stimulation, the increase in magnetic resonance signal intensity was delayed relative to the stimulus. The mean delay measured from the start of stimulation for each protocol was as follows: 2-s stimulation, delay = 3.5 s (SD = 0.5 s, n = 10) (the delay exceeds stimulus duration); 20- to 24-s stimulation, delay = 5 s (SD = 2 s, n = 20).</description><subject>Biological and medical sciences</subject><subject>Brain</subject><subject>Brain Mapping</subject><subject>Capillaries</subject><subject>Eye and associated structures. Visual pathways and centers. Vision</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Heart rate</subject><subject>Hemoglobins</subject><subject>Humans</subject><subject>Imaging</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnets</subject><subject>Mathematics</subject><subject>Models, Theoretical</subject><subject>Neurology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Photic Stimulation</subject><subject>Pixels</subject><subject>Propagation delay</subject><subject>Reference Values</subject><subject>Signal noise</subject><subject>Supine Position</subject><subject>Time Factors</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Visual cortex</subject><subject>Visual Cortex - anatomy &amp; histology</subject><subject>Visual Cortex - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUuP0zAUhS0EGsrAngWICCHEJuX6mVhig8qjIw1CYoCt5bp2miqxM3aC6L_HpaUMLEBeeHG-c18HoYcY5hgq-nLwOs1rOSdkjjEIeQvNMEhcCibhNpoBkKqsGWF30b2UtgAgeQ1n6AwzWlNczdDVm53XfWuKD3oYWt8UwRXjxhbLqde--NqmSXfFIsTRfi9Wu2LZNpvyarB2nQ2Nt2N2frIpeO2NLS563eQa99Edp7tkHxz_c_Tl3dvPi2V5-fH9xeL1ZWnyeGNJHdRr7TimkmBmjBAEi8pRLhhm2tSSu_yYcJwYIoFal1WBhV2tsIYMnqNXh7rDtOrt2lg_Rt2pIba9jjsVdKv-VHy7UU34pjiwmmf786M9huvJplH1bTK267S3YUqqohQYI_8HsWCkwrLK4NO_wG2Yos83UAQwEZRRyBAcIBNDStG608AY1D5UtQ9V1VIRon6Gmi2Pby7623BIMevPjrpORncu5jTadMIYz63lfo8XR2zf4Jd6o5FyU9flpMeMPvk3molHB2KbxhBPCKGCAGf0B54bywU</recordid><startdate>19921115</startdate><enddate>19921115</enddate><creator>Blamire, Andrew M.</creator><creator>Ogawa, Seiji</creator><creator>Ugurbil, Kamil</creator><creator>Rothman, Douglas</creator><creator>McCarthy, Gregory</creator><creator>Ellermann, Jutta M.</creator><creator>Hyder, Fahmeed</creator><creator>Rattner, Zachary</creator><creator>Schulman, Robert G.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19921115</creationdate><title>Dynamic Mapping of the Human Visual Cortex by High-Speed Magnetic Resonance Imaging</title><author>Blamire, Andrew M. ; Ogawa, Seiji ; Ugurbil, Kamil ; Rothman, Douglas ; McCarthy, Gregory ; Ellermann, Jutta M. ; Hyder, Fahmeed ; Rattner, Zachary ; Schulman, Robert G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c649t-3f08daf5139214cc662167f356414ac895f5f546f52c2903ef67f616ebb1a07f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Biological and medical sciences</topic><topic>Brain</topic><topic>Brain Mapping</topic><topic>Capillaries</topic><topic>Eye and associated structures. Visual pathways and centers. Vision</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Heart rate</topic><topic>Hemoglobins</topic><topic>Humans</topic><topic>Imaging</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnets</topic><topic>Mathematics</topic><topic>Models, Theoretical</topic><topic>Neurology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Photic Stimulation</topic><topic>Pixels</topic><topic>Propagation delay</topic><topic>Reference Values</topic><topic>Signal noise</topic><topic>Supine Position</topic><topic>Time Factors</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Visual cortex</topic><topic>Visual Cortex - anatomy &amp; histology</topic><topic>Visual Cortex - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blamire, Andrew M.</creatorcontrib><creatorcontrib>Ogawa, Seiji</creatorcontrib><creatorcontrib>Ugurbil, Kamil</creatorcontrib><creatorcontrib>Rothman, Douglas</creatorcontrib><creatorcontrib>McCarthy, Gregory</creatorcontrib><creatorcontrib>Ellermann, Jutta M.</creatorcontrib><creatorcontrib>Hyder, Fahmeed</creatorcontrib><creatorcontrib>Rattner, Zachary</creatorcontrib><creatorcontrib>Schulman, Robert G.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blamire, Andrew M.</au><au>Ogawa, Seiji</au><au>Ugurbil, Kamil</au><au>Rothman, Douglas</au><au>McCarthy, Gregory</au><au>Ellermann, Jutta M.</au><au>Hyder, Fahmeed</au><au>Rattner, Zachary</au><au>Schulman, Robert G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Mapping of the Human Visual Cortex by High-Speed Magnetic Resonance Imaging</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1992-11-15</date><risdate>1992</risdate><volume>89</volume><issue>22</issue><spage>11069</spage><epage>11073</epage><pages>11069-11073</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>We report the use of high-speed magnetic resonance imaging to follow the changes in image intensity in the human visual cortex during stimulation by a flashing checkerboard stimulus. Measurements were made in a 2.1-T, 1-m-diameter magnet, part of a Bruker Biospec spectrometer that we had programmed to do echo-planar imaging. A 15-cm-diameter surface coil was used to transmit and receive signals. Images were acquired during periods of stimulation from 2 s to 180 s. Images were acquired in 65.5 ms in a 10-mm slice with in-plane voxel size of 6 x 3 mm. Repetition time (TR) was generally 2 s, although for the long flashing periods, TR= 8 s was used. Voxels were located onto an inversion recovery image taken with 2 x 2 mm in-plane resolution. Image intensity increased after onset of the stimulus. The mean change in signal relative to the prestimulation level (ΔS/ S) was 9.7% (SD = 2.8%, n = 20) with an echo time of 70 ms. Irrespective of the period of stimulation, the increase in magnetic resonance signal intensity was delayed relative to the stimulus. The mean delay measured from the start of stimulation for each protocol was as follows: 2-s stimulation, delay = 3.5 s (SD = 0.5 s, n = 10) (the delay exceeds stimulus duration); 20- to 24-s stimulation, delay = 5 s (SD = 2 s, n = 20).</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>1438317</pmid><doi>10.1073/pnas.89.22.11069</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1992-11, Vol.89 (22), p.11069-11073
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_73304425
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological and medical sciences
Brain
Brain Mapping
Capillaries
Eye and associated structures. Visual pathways and centers. Vision
Fundamental and applied biological sciences. Psychology
Heart rate
Hemoglobins
Humans
Imaging
Magnetic resonance
Magnetic Resonance Imaging - methods
Magnets
Mathematics
Models, Theoretical
Neurology
NMR
Nuclear magnetic resonance
Photic Stimulation
Pixels
Propagation delay
Reference Values
Signal noise
Supine Position
Time Factors
Vertebrates: nervous system and sense organs
Visual cortex
Visual Cortex - anatomy & histology
Visual Cortex - physiology
title Dynamic Mapping of the Human Visual Cortex by High-Speed Magnetic Resonance Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Mapping%20of%20the%20Human%20Visual%20Cortex%20by%20High-Speed%20Magnetic%20Resonance%20Imaging&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Blamire,%20Andrew%20M.&rft.date=1992-11-15&rft.volume=89&rft.issue=22&rft.spage=11069&rft.epage=11073&rft.pages=11069-11073&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.89.22.11069&rft_dat=%3Cjstor_proqu%3E2362054%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201263430&rft_id=info:pmid/1438317&rft_jstor_id=2362054&rfr_iscdi=true