Mechanism of the first-order phase transition of an acylurea derivative: observation of intermediate stages of transformation with a detailed temperature-resolved single-crystal diffraction method

The process of the first‐order solid‐to‐solid phase transition of 1‐ethyl‐3‐(4‐methylpentanoyl)urea (1) was observed by means of a detailed temperature‐resolved single‐crystal diffraction method, which resembles watching a series of stop‐motion photographs. The transition consists of two elementary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica. Section B, Structural science Structural science, 2003-06, Vol.59 (3), p.404-415
Hauptverfasser: Hashizume, Daisuke, Miki, Naoko, Yamazaki, Toshiyuki, Aoyagi, Yosuke, Arisato, Tomokuni, Uchiyama, Hiroki, Endo, Tadashi, Yasui, Masanori, Iwasaki, Fujiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 415
container_issue 3
container_start_page 404
container_title Acta crystallographica. Section B, Structural science
container_volume 59
creator Hashizume, Daisuke
Miki, Naoko
Yamazaki, Toshiyuki
Aoyagi, Yosuke
Arisato, Tomokuni
Uchiyama, Hiroki
Endo, Tadashi
Yasui, Masanori
Iwasaki, Fujiko
description The process of the first‐order solid‐to‐solid phase transition of 1‐ethyl‐3‐(4‐methylpentanoyl)urea (1) was observed by means of a detailed temperature‐resolved single‐crystal diffraction method, which resembles watching a series of stop‐motion photographs. The transition consists of two elementary processes, one supramolecular and the other molecular. Crystal structures from before and after the phase transition are isostructural. The straight‐ribbon‐like one‐dimensional hydrogen‐bonding structure is formed and stacked to form a molecular layer. The geometry of the layer is retained during the phase transition. The relative position of the layer with its neighbours, on the other hand, changes gradually with increasing temperature. The change is accelerated at the temperature representing the start of the endotherm seen in the DSC curves of (1). The structural variation yields void space between the neighbouring layers. When the void space grows enough that the crystal is unstable, the 3‐methylbutyl group on the last of the molecules turns into a disordered structure with drastic conformational changes to fill up the void space. The phase transition process is well supported with simple force‐field calculations. A crystal of 1‐(4‐methylpentanoyl)‐3‐propylurea (2), which shows no solid‐to‐solid phase transitions, was also analysed by the same method for comparison.
doi_str_mv 10.1107/S0108768103005792
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73303696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73303696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4141-efae0fa6feb9a391674baba79bdc9e6cded7fecf6ea019ada08578578b9b177f3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEotvCD-CCfIFbyniTtRNu7UIX0JYPAao4WRNn3BjysdjeLfv_-GE4zYoeOCBZsjzzvO_I7yTJEw6nnIN88Rk4FFIUHDKAhSzn95IZFwDpQuZwP5mN7XTsHyXH3n8HgJwX8DA54nMpeM5hlvy-JN1gb33HBsNCQ8xY50M6uJoc2zToiQWHvbfBDv3IYM9Q79utI2SRsTsMdkcv2VB5cuNjwmwfyHVUWwzEfMBr8rcTRi8zuG4Cb2xo2OgT0LZUs0DdhhyG6J468kO7i0Vv--uWUu320adltTXGob7VdxSaoX6UPDDYenp8uE-SrxevvyzfpOsPq7fLs3Wq8_jblAwSGBSGqhKzkguZV1ihLKtalyR0TbU0pI0gBF5ijVAs5HiqsuJSmuwkeT75btzwc0s-qM56TW2LPQ1br2SWQSZKEUE-gdoN3jsyauNsh26vOKhxdeqf1UXN04P5toq53SkOu4rAswOAXmMbM-i19XdcXuTzLCsiV0zcTYx0___J6uzb-XoJIHiUppPU-kC__krR_VBCZnKhrt6v1KuPV5fvVp_O1UX2B3Hpx-U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73303696</pqid></control><display><type>article</type><title>Mechanism of the first-order phase transition of an acylurea derivative: observation of intermediate stages of transformation with a detailed temperature-resolved single-crystal diffraction method</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hashizume, Daisuke ; Miki, Naoko ; Yamazaki, Toshiyuki ; Aoyagi, Yosuke ; Arisato, Tomokuni ; Uchiyama, Hiroki ; Endo, Tadashi ; Yasui, Masanori ; Iwasaki, Fujiko</creator><creatorcontrib>Hashizume, Daisuke ; Miki, Naoko ; Yamazaki, Toshiyuki ; Aoyagi, Yosuke ; Arisato, Tomokuni ; Uchiyama, Hiroki ; Endo, Tadashi ; Yasui, Masanori ; Iwasaki, Fujiko</creatorcontrib><description>The process of the first‐order solid‐to‐solid phase transition of 1‐ethyl‐3‐(4‐methylpentanoyl)urea (1) was observed by means of a detailed temperature‐resolved single‐crystal diffraction method, which resembles watching a series of stop‐motion photographs. The transition consists of two elementary processes, one supramolecular and the other molecular. Crystal structures from before and after the phase transition are isostructural. The straight‐ribbon‐like one‐dimensional hydrogen‐bonding structure is formed and stacked to form a molecular layer. The geometry of the layer is retained during the phase transition. The relative position of the layer with its neighbours, on the other hand, changes gradually with increasing temperature. The change is accelerated at the temperature representing the start of the endotherm seen in the DSC curves of (1). The structural variation yields void space between the neighbouring layers. When the void space grows enough that the crystal is unstable, the 3‐methylbutyl group on the last of the molecules turns into a disordered structure with drastic conformational changes to fill up the void space. The phase transition process is well supported with simple force‐field calculations. A crystal of 1‐(4‐methylpentanoyl)‐3‐propylurea (2), which shows no solid‐to‐solid phase transitions, was also analysed by the same method for comparison.</description><identifier>ISSN: 0108-7681</identifier><identifier>EISSN: 1600-5740</identifier><identifier>DOI: 10.1107/S0108768103005792</identifier><identifier>PMID: 12761410</identifier><identifier>CODEN: ASBSDK</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Aliphatic, non-condensed and condensed benzenic, and alicyclic compounds ; Condensed matter: structure, mechanical and thermal properties ; Crystalline state (including molecular motions in solids) ; Crystallographic aspects of phase transformations; pressure effects ; dynamics in organic crystal ; Exact sciences and technology ; Organic compounds ; phase transition ; Physics ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids ; temperature-resolved measurement</subject><ispartof>Acta crystallographica. Section B, Structural science, 2003-06, Vol.59 (3), p.404-415</ispartof><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4141-efae0fa6feb9a391674baba79bdc9e6cded7fecf6ea019ada08578578b9b177f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS0108768103005792$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS0108768103005792$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14842338$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12761410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hashizume, Daisuke</creatorcontrib><creatorcontrib>Miki, Naoko</creatorcontrib><creatorcontrib>Yamazaki, Toshiyuki</creatorcontrib><creatorcontrib>Aoyagi, Yosuke</creatorcontrib><creatorcontrib>Arisato, Tomokuni</creatorcontrib><creatorcontrib>Uchiyama, Hiroki</creatorcontrib><creatorcontrib>Endo, Tadashi</creatorcontrib><creatorcontrib>Yasui, Masanori</creatorcontrib><creatorcontrib>Iwasaki, Fujiko</creatorcontrib><title>Mechanism of the first-order phase transition of an acylurea derivative: observation of intermediate stages of transformation with a detailed temperature-resolved single-crystal diffraction method</title><title>Acta crystallographica. Section B, Structural science</title><addtitle>Acta Cryst. B</addtitle><description>The process of the first‐order solid‐to‐solid phase transition of 1‐ethyl‐3‐(4‐methylpentanoyl)urea (1) was observed by means of a detailed temperature‐resolved single‐crystal diffraction method, which resembles watching a series of stop‐motion photographs. The transition consists of two elementary processes, one supramolecular and the other molecular. Crystal structures from before and after the phase transition are isostructural. The straight‐ribbon‐like one‐dimensional hydrogen‐bonding structure is formed and stacked to form a molecular layer. The geometry of the layer is retained during the phase transition. The relative position of the layer with its neighbours, on the other hand, changes gradually with increasing temperature. The change is accelerated at the temperature representing the start of the endotherm seen in the DSC curves of (1). The structural variation yields void space between the neighbouring layers. When the void space grows enough that the crystal is unstable, the 3‐methylbutyl group on the last of the molecules turns into a disordered structure with drastic conformational changes to fill up the void space. The phase transition process is well supported with simple force‐field calculations. A crystal of 1‐(4‐methylpentanoyl)‐3‐propylurea (2), which shows no solid‐to‐solid phase transitions, was also analysed by the same method for comparison.</description><subject>Aliphatic, non-condensed and condensed benzenic, and alicyclic compounds</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Crystalline state (including molecular motions in solids)</subject><subject>Crystallographic aspects of phase transformations; pressure effects</subject><subject>dynamics in organic crystal</subject><subject>Exact sciences and technology</subject><subject>Organic compounds</subject><subject>phase transition</subject><subject>Physics</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><subject>temperature-resolved measurement</subject><issn>0108-7681</issn><issn>1600-5740</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhiMEotvCD-CCfIFbyniTtRNu7UIX0JYPAao4WRNn3BjysdjeLfv_-GE4zYoeOCBZsjzzvO_I7yTJEw6nnIN88Rk4FFIUHDKAhSzn95IZFwDpQuZwP5mN7XTsHyXH3n8HgJwX8DA54nMpeM5hlvy-JN1gb33HBsNCQ8xY50M6uJoc2zToiQWHvbfBDv3IYM9Q79utI2SRsTsMdkcv2VB5cuNjwmwfyHVUWwzEfMBr8rcTRi8zuG4Cb2xo2OgT0LZUs0DdhhyG6J468kO7i0Vv--uWUu320adltTXGob7VdxSaoX6UPDDYenp8uE-SrxevvyzfpOsPq7fLs3Wq8_jblAwSGBSGqhKzkguZV1ihLKtalyR0TbU0pI0gBF5ijVAs5HiqsuJSmuwkeT75btzwc0s-qM56TW2LPQ1br2SWQSZKEUE-gdoN3jsyauNsh26vOKhxdeqf1UXN04P5toq53SkOu4rAswOAXmMbM-i19XdcXuTzLCsiV0zcTYx0___J6uzb-XoJIHiUppPU-kC__krR_VBCZnKhrt6v1KuPV5fvVp_O1UX2B3Hpx-U</recordid><startdate>200306</startdate><enddate>200306</enddate><creator>Hashizume, Daisuke</creator><creator>Miki, Naoko</creator><creator>Yamazaki, Toshiyuki</creator><creator>Aoyagi, Yosuke</creator><creator>Arisato, Tomokuni</creator><creator>Uchiyama, Hiroki</creator><creator>Endo, Tadashi</creator><creator>Yasui, Masanori</creator><creator>Iwasaki, Fujiko</creator><general>International Union of Crystallography</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200306</creationdate><title>Mechanism of the first-order phase transition of an acylurea derivative: observation of intermediate stages of transformation with a detailed temperature-resolved single-crystal diffraction method</title><author>Hashizume, Daisuke ; Miki, Naoko ; Yamazaki, Toshiyuki ; Aoyagi, Yosuke ; Arisato, Tomokuni ; Uchiyama, Hiroki ; Endo, Tadashi ; Yasui, Masanori ; Iwasaki, Fujiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4141-efae0fa6feb9a391674baba79bdc9e6cded7fecf6ea019ada08578578b9b177f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Aliphatic, non-condensed and condensed benzenic, and alicyclic compounds</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Crystalline state (including molecular motions in solids)</topic><topic>Crystallographic aspects of phase transformations; pressure effects</topic><topic>dynamics in organic crystal</topic><topic>Exact sciences and technology</topic><topic>Organic compounds</topic><topic>phase transition</topic><topic>Physics</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><topic>temperature-resolved measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hashizume, Daisuke</creatorcontrib><creatorcontrib>Miki, Naoko</creatorcontrib><creatorcontrib>Yamazaki, Toshiyuki</creatorcontrib><creatorcontrib>Aoyagi, Yosuke</creatorcontrib><creatorcontrib>Arisato, Tomokuni</creatorcontrib><creatorcontrib>Uchiyama, Hiroki</creatorcontrib><creatorcontrib>Endo, Tadashi</creatorcontrib><creatorcontrib>Yasui, Masanori</creatorcontrib><creatorcontrib>Iwasaki, Fujiko</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Acta crystallographica. Section B, Structural science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hashizume, Daisuke</au><au>Miki, Naoko</au><au>Yamazaki, Toshiyuki</au><au>Aoyagi, Yosuke</au><au>Arisato, Tomokuni</au><au>Uchiyama, Hiroki</au><au>Endo, Tadashi</au><au>Yasui, Masanori</au><au>Iwasaki, Fujiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of the first-order phase transition of an acylurea derivative: observation of intermediate stages of transformation with a detailed temperature-resolved single-crystal diffraction method</atitle><jtitle>Acta crystallographica. Section B, Structural science</jtitle><addtitle>Acta Cryst. B</addtitle><date>2003-06</date><risdate>2003</risdate><volume>59</volume><issue>3</issue><spage>404</spage><epage>415</epage><pages>404-415</pages><issn>0108-7681</issn><eissn>1600-5740</eissn><coden>ASBSDK</coden><abstract>The process of the first‐order solid‐to‐solid phase transition of 1‐ethyl‐3‐(4‐methylpentanoyl)urea (1) was observed by means of a detailed temperature‐resolved single‐crystal diffraction method, which resembles watching a series of stop‐motion photographs. The transition consists of two elementary processes, one supramolecular and the other molecular. Crystal structures from before and after the phase transition are isostructural. The straight‐ribbon‐like one‐dimensional hydrogen‐bonding structure is formed and stacked to form a molecular layer. The geometry of the layer is retained during the phase transition. The relative position of the layer with its neighbours, on the other hand, changes gradually with increasing temperature. The change is accelerated at the temperature representing the start of the endotherm seen in the DSC curves of (1). The structural variation yields void space between the neighbouring layers. When the void space grows enough that the crystal is unstable, the 3‐methylbutyl group on the last of the molecules turns into a disordered structure with drastic conformational changes to fill up the void space. The phase transition process is well supported with simple force‐field calculations. A crystal of 1‐(4‐methylpentanoyl)‐3‐propylurea (2), which shows no solid‐to‐solid phase transitions, was also analysed by the same method for comparison.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>12761410</pmid><doi>10.1107/S0108768103005792</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0108-7681
ispartof Acta crystallographica. Section B, Structural science, 2003-06, Vol.59 (3), p.404-415
issn 0108-7681
1600-5740
language eng
recordid cdi_proquest_miscellaneous_73303696
source Wiley Online Library Journals Frontfile Complete
subjects Aliphatic, non-condensed and condensed benzenic, and alicyclic compounds
Condensed matter: structure, mechanical and thermal properties
Crystalline state (including molecular motions in solids)
Crystallographic aspects of phase transformations
pressure effects
dynamics in organic crystal
Exact sciences and technology
Organic compounds
phase transition
Physics
Structure of solids and liquids
crystallography
Structure of specific crystalline solids
temperature-resolved measurement
title Mechanism of the first-order phase transition of an acylurea derivative: observation of intermediate stages of transformation with a detailed temperature-resolved single-crystal diffraction method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A57%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20the%20first-order%20phase%20transition%20of%20an%20acylurea%20derivative:%20observation%20of%20intermediate%20stages%20of%20transformation%20with%20a%20detailed%20temperature-resolved%20single-crystal%20diffraction%20method&rft.jtitle=Acta%20crystallographica.%20Section%20B,%20Structural%20science&rft.au=Hashizume,%20Daisuke&rft.date=2003-06&rft.volume=59&rft.issue=3&rft.spage=404&rft.epage=415&rft.pages=404-415&rft.issn=0108-7681&rft.eissn=1600-5740&rft.coden=ASBSDK&rft_id=info:doi/10.1107/S0108768103005792&rft_dat=%3Cproquest_cross%3E73303696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73303696&rft_id=info:pmid/12761410&rfr_iscdi=true