Requirement for the PI3K Akt pathway in MEK1-mediated growth and prevention of apoptosis: identification of an Achilles heel in leukemia

The Raf/MEK/ERK kinase cascade plays a critical role in transducing growth signals from activated cell surface receptors. Using ΔMEK1:ER, a conditionally active form of MEK1 which responds to either β -estradiol or the estrogen receptor antagonist 4 hydroxy-tamoxifen (4HT), we previously documented...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Leukemia 2003-06, Vol.17 (6), p.1058-1067
Hauptverfasser: Blalock, W L, Navolanic, P M, Steelman, L S, Shelton, J G, Moye, P W, Lee, J T, Franklin, R A, Mirza, A, McMahon, M, White, M K, McCubrey, J A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1067
container_issue 6
container_start_page 1058
container_title Leukemia
container_volume 17
creator Blalock, W L
Navolanic, P M
Steelman, L S
Shelton, J G
Moye, P W
Lee, J T
Franklin, R A
Mirza, A
McMahon, M
White, M K
McCubrey, J A
description The Raf/MEK/ERK kinase cascade plays a critical role in transducing growth signals from activated cell surface receptors. Using ΔMEK1:ER, a conditionally active form of MEK1 which responds to either β -estradiol or the estrogen receptor antagonist 4 hydroxy-tamoxifen (4HT), we previously documented the ability of this dual specificity protein kinase to abrogate the cytokine-dependency of human (TF-1) and murine (FDC-P1 and FL5.12) hematopoietic cells lines. Here we demonstrate the ability of ΔMEK1:ER to activate the phosphatidylinositol 3-kinase (PI3K)/Akt/p70 ribosomal S6 kinase (p70 S6K ) pathway and the importance of this pathway in MEK1-mediated prevention of apoptosis. MEK1-responsive cells can be maintained long term in the presence of β -estradiol, 4HT or IL-3. Removal of hormone led to the rapid cessation of cell proliferation and the induction of apoptosis in a manner similar to cytokine deprivation of the parental cells. Stimulation of ΔMEK1:ER by 4HT resulted in ERK, PI3K, Akt and p70 S6K activation. Treatment with PI3K, Akt and p70 S6K inhibitors prevented MEK-responsive growth. Furthermore, the apoptotic effects of PI3K/Akt/p70 S6K inhibitors could be enhanced by cotreatment with MEK inhibitors. Use of a PI3K inhibitor and a constitutively active form of Akt, [ΔAkt(Myr + )], indicated that activation of PI3K was necessary for MEK1-responsive growth and survival as activation of Akt alone was unable to compensate for the loss of PI3K activity. Cells transduced by MEK or MEK+Akt displayed different sensitivities to signal transduction inhibitors, which targeted these pathways. These results indicate a requirement for the activation of the PI3K pathway during MEK-mediated transformation of certain hematopoietic cells. These experiments provide important clues as to why the identification of mutant signaling pathways may be the Achilles heel of leukemic cell growth. Leukemia treatment targeting multiple signal transduction pathways may be more efficacious than therapy aimed at inhibiting a single pathway.
doi_str_mv 10.1038/sj.leu.2402925
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_73302421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A188519216</galeid><sourcerecordid>A188519216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-323204db77c85e54c652fd997762b71984fb49105c796032cd683611b12512d63</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEoqVw5QayQHDL1mPHdtLbqipQtQiE4Bx5HWfjbdZObYeq_4CfjcOGLiBVyAdL8z7zPVn2HPACMC2Pw2bR63FBCkwqwh5kh1AInjPG4GF2iMtS5LwixUH2JIQNxpPIH2cHQAQvKK8Osx9f9PVovN5qG1HrPIqdRp_P6QVaXkU0yNjdyFtkLPp4dgH5VjdGRt2gtXc3sUPSNmjw-ntyNs4i1yI5uCG6YMIJMs1kbo2Sd6JFS9WZvtcBdVr3U9xU_ZXeGvk0e9TKPuhn83-UfXt39vX0Q3756f356fIyV0xUMaeEElw0KyFUyTQrFGekbapKCE5WAqqyaFdFBZgpUXFMiWp4STnACggD0nB6lL3dxR28ux51iPXWBKX7XlrtxlALSjEpCPwXhLIEAkAS-PofcONGb1MTNeEFE7gUjCbq1b0UwYwD5xO02EFr2eva2NZFL1V6TRqRcla3JtmXKTWDisAf3fxy6LTsYxdcP04TD3-Dc2TlXQhet_XgzVb62xpwPV1SHTZ12kU9X1JyeDnXO67S2vf4fDoJeDMDMijZt15aZcKeK0oAiifueMeFJNm19vvG7039YudhZRy9vgv5W_8JZb7niA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>220561663</pqid></control><display><type>article</type><title>Requirement for the PI3K Akt pathway in MEK1-mediated growth and prevention of apoptosis: identification of an Achilles heel in leukemia</title><source>MEDLINE</source><source>Nature</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Blalock, W L ; Navolanic, P M ; Steelman, L S ; Shelton, J G ; Moye, P W ; Lee, J T ; Franklin, R A ; Mirza, A ; McMahon, M ; White, M K ; McCubrey, J A</creator><creatorcontrib>Blalock, W L ; Navolanic, P M ; Steelman, L S ; Shelton, J G ; Moye, P W ; Lee, J T ; Franklin, R A ; Mirza, A ; McMahon, M ; White, M K ; McCubrey, J A</creatorcontrib><description>The Raf/MEK/ERK kinase cascade plays a critical role in transducing growth signals from activated cell surface receptors. Using ΔMEK1:ER, a conditionally active form of MEK1 which responds to either β -estradiol or the estrogen receptor antagonist 4 hydroxy-tamoxifen (4HT), we previously documented the ability of this dual specificity protein kinase to abrogate the cytokine-dependency of human (TF-1) and murine (FDC-P1 and FL5.12) hematopoietic cells lines. Here we demonstrate the ability of ΔMEK1:ER to activate the phosphatidylinositol 3-kinase (PI3K)/Akt/p70 ribosomal S6 kinase (p70 S6K ) pathway and the importance of this pathway in MEK1-mediated prevention of apoptosis. MEK1-responsive cells can be maintained long term in the presence of β -estradiol, 4HT or IL-3. Removal of hormone led to the rapid cessation of cell proliferation and the induction of apoptosis in a manner similar to cytokine deprivation of the parental cells. Stimulation of ΔMEK1:ER by 4HT resulted in ERK, PI3K, Akt and p70 S6K activation. Treatment with PI3K, Akt and p70 S6K inhibitors prevented MEK-responsive growth. Furthermore, the apoptotic effects of PI3K/Akt/p70 S6K inhibitors could be enhanced by cotreatment with MEK inhibitors. Use of a PI3K inhibitor and a constitutively active form of Akt, [ΔAkt(Myr + )], indicated that activation of PI3K was necessary for MEK1-responsive growth and survival as activation of Akt alone was unable to compensate for the loss of PI3K activity. Cells transduced by MEK or MEK+Akt displayed different sensitivities to signal transduction inhibitors, which targeted these pathways. These results indicate a requirement for the activation of the PI3K pathway during MEK-mediated transformation of certain hematopoietic cells. These experiments provide important clues as to why the identification of mutant signaling pathways may be the Achilles heel of leukemic cell growth. Leukemia treatment targeting multiple signal transduction pathways may be more efficacious than therapy aimed at inhibiting a single pathway.</description><identifier>ISSN: 0887-6924</identifier><identifier>EISSN: 1476-5551</identifier><identifier>DOI: 10.1038/sj.leu.2402925</identifier><identifier>PMID: 12764369</identifier><identifier>CODEN: LEUKED</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>1-Phosphatidylinositol 3-kinase ; 17β-Estradiol ; AKT protein ; Animals ; Antineoplastic Agents - pharmacology ; Apoptosis ; Apoptosis - drug effects ; Biological and medical sciences ; Blotting, Western ; Cancer ; Cancer Research ; Cell Division - drug effects ; Cell growth ; Cell proliferation ; Cell surface ; Critical Care Medicine ; Cytokines ; Deprivation ; Enzyme Inhibitors - pharmacology ; Estrogen receptors ; Estrogens ; Extracellular signal-regulated kinase ; Granulocytes ; Hematologic and hematopoietic diseases ; Hematology ; Immunology ; Inhibitors ; Intensive ; Interleukin 3 ; Interleukin-3 - pharmacology ; Internal Medicine ; Kinases ; Leukemia ; Leukemia, Myeloid - drug therapy ; Leukemia, Myeloid - metabolism ; Leukemia, Myeloid - pathology ; Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis ; Ligands ; MAP Kinase Kinase 1 ; Medical sciences ; Medicine ; Medicine &amp; Public Health ; MEK inhibitors ; Mice ; Mitogen-Activated Protein Kinase 1 - metabolism ; Mitogen-Activated Protein Kinase Kinases - genetics ; Mitogen-Activated Protein Kinase Kinases - pharmacology ; Oncology ; original-manuscript ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphorylation ; Prevention ; Protein kinase ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - pharmacology ; Proto-Oncogene Proteins - metabolism ; Proto-Oncogene Proteins c-akt ; Proto-Oncogene Proteins c-raf - metabolism ; Raf protein ; Receptors ; Receptors, Estrogen - metabolism ; Retroviridae ; Ribosomal protein S6 kinase ; Ribosomal Protein S6 Kinases, 70-kDa - metabolism ; Sex hormones ; Signal transduction ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Tumor Cells, Cultured - drug effects ; Tumor Cells, Cultured - metabolism</subject><ispartof>Leukemia, 2003-06, Vol.17 (6), p.1058-1067</ispartof><rights>Springer Nature Limited 2003</rights><rights>2003 INIST-CNRS</rights><rights>COPYRIGHT 2003 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 2003</rights><rights>Nature Publishing Group 2003.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-323204db77c85e54c652fd997762b71984fb49105c796032cd683611b12512d63</citedby><cites>FETCH-LOGICAL-c579t-323204db77c85e54c652fd997762b71984fb49105c796032cd683611b12512d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14811309$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12764369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blalock, W L</creatorcontrib><creatorcontrib>Navolanic, P M</creatorcontrib><creatorcontrib>Steelman, L S</creatorcontrib><creatorcontrib>Shelton, J G</creatorcontrib><creatorcontrib>Moye, P W</creatorcontrib><creatorcontrib>Lee, J T</creatorcontrib><creatorcontrib>Franklin, R A</creatorcontrib><creatorcontrib>Mirza, A</creatorcontrib><creatorcontrib>McMahon, M</creatorcontrib><creatorcontrib>White, M K</creatorcontrib><creatorcontrib>McCubrey, J A</creatorcontrib><title>Requirement for the PI3K Akt pathway in MEK1-mediated growth and prevention of apoptosis: identification of an Achilles heel in leukemia</title><title>Leukemia</title><addtitle>Leukemia</addtitle><addtitle>Leukemia</addtitle><description>The Raf/MEK/ERK kinase cascade plays a critical role in transducing growth signals from activated cell surface receptors. Using ΔMEK1:ER, a conditionally active form of MEK1 which responds to either β -estradiol or the estrogen receptor antagonist 4 hydroxy-tamoxifen (4HT), we previously documented the ability of this dual specificity protein kinase to abrogate the cytokine-dependency of human (TF-1) and murine (FDC-P1 and FL5.12) hematopoietic cells lines. Here we demonstrate the ability of ΔMEK1:ER to activate the phosphatidylinositol 3-kinase (PI3K)/Akt/p70 ribosomal S6 kinase (p70 S6K ) pathway and the importance of this pathway in MEK1-mediated prevention of apoptosis. MEK1-responsive cells can be maintained long term in the presence of β -estradiol, 4HT or IL-3. Removal of hormone led to the rapid cessation of cell proliferation and the induction of apoptosis in a manner similar to cytokine deprivation of the parental cells. Stimulation of ΔMEK1:ER by 4HT resulted in ERK, PI3K, Akt and p70 S6K activation. Treatment with PI3K, Akt and p70 S6K inhibitors prevented MEK-responsive growth. Furthermore, the apoptotic effects of PI3K/Akt/p70 S6K inhibitors could be enhanced by cotreatment with MEK inhibitors. Use of a PI3K inhibitor and a constitutively active form of Akt, [ΔAkt(Myr + )], indicated that activation of PI3K was necessary for MEK1-responsive growth and survival as activation of Akt alone was unable to compensate for the loss of PI3K activity. Cells transduced by MEK or MEK+Akt displayed different sensitivities to signal transduction inhibitors, which targeted these pathways. These results indicate a requirement for the activation of the PI3K pathway during MEK-mediated transformation of certain hematopoietic cells. These experiments provide important clues as to why the identification of mutant signaling pathways may be the Achilles heel of leukemic cell growth. Leukemia treatment targeting multiple signal transduction pathways may be more efficacious than therapy aimed at inhibiting a single pathway.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>17β-Estradiol</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Biological and medical sciences</subject><subject>Blotting, Western</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Cell Division - drug effects</subject><subject>Cell growth</subject><subject>Cell proliferation</subject><subject>Cell surface</subject><subject>Critical Care Medicine</subject><subject>Cytokines</subject><subject>Deprivation</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Estrogen receptors</subject><subject>Estrogens</subject><subject>Extracellular signal-regulated kinase</subject><subject>Granulocytes</subject><subject>Hematologic and hematopoietic diseases</subject><subject>Hematology</subject><subject>Immunology</subject><subject>Inhibitors</subject><subject>Intensive</subject><subject>Interleukin 3</subject><subject>Interleukin-3 - pharmacology</subject><subject>Internal Medicine</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Leukemia, Myeloid - drug therapy</subject><subject>Leukemia, Myeloid - metabolism</subject><subject>Leukemia, Myeloid - pathology</subject><subject>Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis</subject><subject>Ligands</subject><subject>MAP Kinase Kinase 1</subject><subject>Medical sciences</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>MEK inhibitors</subject><subject>Mice</subject><subject>Mitogen-Activated Protein Kinase 1 - metabolism</subject><subject>Mitogen-Activated Protein Kinase Kinases - genetics</subject><subject>Mitogen-Activated Protein Kinase Kinases - pharmacology</subject><subject>Oncology</subject><subject>original-manuscript</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Prevention</subject><subject>Protein kinase</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - pharmacology</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Proto-Oncogene Proteins c-akt</subject><subject>Proto-Oncogene Proteins c-raf - metabolism</subject><subject>Raf protein</subject><subject>Receptors</subject><subject>Receptors, Estrogen - metabolism</subject><subject>Retroviridae</subject><subject>Ribosomal protein S6 kinase</subject><subject>Ribosomal Protein S6 Kinases, 70-kDa - metabolism</subject><subject>Sex hormones</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Tumor Cells, Cultured - drug effects</subject><subject>Tumor Cells, Cultured - metabolism</subject><issn>0887-6924</issn><issn>1476-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkk1v1DAQhiMEoqVw5QayQHDL1mPHdtLbqipQtQiE4Bx5HWfjbdZObYeq_4CfjcOGLiBVyAdL8z7zPVn2HPACMC2Pw2bR63FBCkwqwh5kh1AInjPG4GF2iMtS5LwixUH2JIQNxpPIH2cHQAQvKK8Osx9f9PVovN5qG1HrPIqdRp_P6QVaXkU0yNjdyFtkLPp4dgH5VjdGRt2gtXc3sUPSNmjw-ntyNs4i1yI5uCG6YMIJMs1kbo2Sd6JFS9WZvtcBdVr3U9xU_ZXeGvk0e9TKPuhn83-UfXt39vX0Q3756f356fIyV0xUMaeEElw0KyFUyTQrFGekbapKCE5WAqqyaFdFBZgpUXFMiWp4STnACggD0nB6lL3dxR28ux51iPXWBKX7XlrtxlALSjEpCPwXhLIEAkAS-PofcONGb1MTNeEFE7gUjCbq1b0UwYwD5xO02EFr2eva2NZFL1V6TRqRcla3JtmXKTWDisAf3fxy6LTsYxdcP04TD3-Dc2TlXQhet_XgzVb62xpwPV1SHTZ12kU9X1JyeDnXO67S2vf4fDoJeDMDMijZt15aZcKeK0oAiifueMeFJNm19vvG7039YudhZRy9vgv5W_8JZb7niA</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Blalock, W L</creator><creator>Navolanic, P M</creator><creator>Steelman, L S</creator><creator>Shelton, J G</creator><creator>Moye, P W</creator><creator>Lee, J T</creator><creator>Franklin, R A</creator><creator>Mirza, A</creator><creator>McMahon, M</creator><creator>White, M K</creator><creator>McCubrey, J A</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20030601</creationdate><title>Requirement for the PI3K Akt pathway in MEK1-mediated growth and prevention of apoptosis: identification of an Achilles heel in leukemia</title><author>Blalock, W L ; Navolanic, P M ; Steelman, L S ; Shelton, J G ; Moye, P W ; Lee, J T ; Franklin, R A ; Mirza, A ; McMahon, M ; White, M K ; McCubrey, J A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-323204db77c85e54c652fd997762b71984fb49105c796032cd683611b12512d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>17β-Estradiol</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Biological and medical sciences</topic><topic>Blotting, Western</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Cell Division - drug effects</topic><topic>Cell growth</topic><topic>Cell proliferation</topic><topic>Cell surface</topic><topic>Critical Care Medicine</topic><topic>Cytokines</topic><topic>Deprivation</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Estrogen receptors</topic><topic>Estrogens</topic><topic>Extracellular signal-regulated kinase</topic><topic>Granulocytes</topic><topic>Hematologic and hematopoietic diseases</topic><topic>Hematology</topic><topic>Immunology</topic><topic>Inhibitors</topic><topic>Intensive</topic><topic>Interleukin 3</topic><topic>Interleukin-3 - pharmacology</topic><topic>Internal Medicine</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Leukemia, Myeloid - drug therapy</topic><topic>Leukemia, Myeloid - metabolism</topic><topic>Leukemia, Myeloid - pathology</topic><topic>Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis</topic><topic>Ligands</topic><topic>MAP Kinase Kinase 1</topic><topic>Medical sciences</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>MEK inhibitors</topic><topic>Mice</topic><topic>Mitogen-Activated Protein Kinase 1 - metabolism</topic><topic>Mitogen-Activated Protein Kinase Kinases - genetics</topic><topic>Mitogen-Activated Protein Kinase Kinases - pharmacology</topic><topic>Oncology</topic><topic>original-manuscript</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Prevention</topic><topic>Protein kinase</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - pharmacology</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Proto-Oncogene Proteins c-akt</topic><topic>Proto-Oncogene Proteins c-raf - metabolism</topic><topic>Raf protein</topic><topic>Receptors</topic><topic>Receptors, Estrogen - metabolism</topic><topic>Retroviridae</topic><topic>Ribosomal protein S6 kinase</topic><topic>Ribosomal Protein S6 Kinases, 70-kDa - metabolism</topic><topic>Sex hormones</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Tumor Cells, Cultured - drug effects</topic><topic>Tumor Cells, Cultured - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blalock, W L</creatorcontrib><creatorcontrib>Navolanic, P M</creatorcontrib><creatorcontrib>Steelman, L S</creatorcontrib><creatorcontrib>Shelton, J G</creatorcontrib><creatorcontrib>Moye, P W</creatorcontrib><creatorcontrib>Lee, J T</creatorcontrib><creatorcontrib>Franklin, R A</creatorcontrib><creatorcontrib>Mirza, A</creatorcontrib><creatorcontrib>McMahon, M</creatorcontrib><creatorcontrib>White, M K</creatorcontrib><creatorcontrib>McCubrey, J A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Leukemia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blalock, W L</au><au>Navolanic, P M</au><au>Steelman, L S</au><au>Shelton, J G</au><au>Moye, P W</au><au>Lee, J T</au><au>Franklin, R A</au><au>Mirza, A</au><au>McMahon, M</au><au>White, M K</au><au>McCubrey, J A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Requirement for the PI3K Akt pathway in MEK1-mediated growth and prevention of apoptosis: identification of an Achilles heel in leukemia</atitle><jtitle>Leukemia</jtitle><stitle>Leukemia</stitle><addtitle>Leukemia</addtitle><date>2003-06-01</date><risdate>2003</risdate><volume>17</volume><issue>6</issue><spage>1058</spage><epage>1067</epage><pages>1058-1067</pages><issn>0887-6924</issn><eissn>1476-5551</eissn><coden>LEUKED</coden><abstract>The Raf/MEK/ERK kinase cascade plays a critical role in transducing growth signals from activated cell surface receptors. Using ΔMEK1:ER, a conditionally active form of MEK1 which responds to either β -estradiol or the estrogen receptor antagonist 4 hydroxy-tamoxifen (4HT), we previously documented the ability of this dual specificity protein kinase to abrogate the cytokine-dependency of human (TF-1) and murine (FDC-P1 and FL5.12) hematopoietic cells lines. Here we demonstrate the ability of ΔMEK1:ER to activate the phosphatidylinositol 3-kinase (PI3K)/Akt/p70 ribosomal S6 kinase (p70 S6K ) pathway and the importance of this pathway in MEK1-mediated prevention of apoptosis. MEK1-responsive cells can be maintained long term in the presence of β -estradiol, 4HT or IL-3. Removal of hormone led to the rapid cessation of cell proliferation and the induction of apoptosis in a manner similar to cytokine deprivation of the parental cells. Stimulation of ΔMEK1:ER by 4HT resulted in ERK, PI3K, Akt and p70 S6K activation. Treatment with PI3K, Akt and p70 S6K inhibitors prevented MEK-responsive growth. Furthermore, the apoptotic effects of PI3K/Akt/p70 S6K inhibitors could be enhanced by cotreatment with MEK inhibitors. Use of a PI3K inhibitor and a constitutively active form of Akt, [ΔAkt(Myr + )], indicated that activation of PI3K was necessary for MEK1-responsive growth and survival as activation of Akt alone was unable to compensate for the loss of PI3K activity. Cells transduced by MEK or MEK+Akt displayed different sensitivities to signal transduction inhibitors, which targeted these pathways. These results indicate a requirement for the activation of the PI3K pathway during MEK-mediated transformation of certain hematopoietic cells. These experiments provide important clues as to why the identification of mutant signaling pathways may be the Achilles heel of leukemic cell growth. Leukemia treatment targeting multiple signal transduction pathways may be more efficacious than therapy aimed at inhibiting a single pathway.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>12764369</pmid><doi>10.1038/sj.leu.2402925</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-6924
ispartof Leukemia, 2003-06, Vol.17 (6), p.1058-1067
issn 0887-6924
1476-5551
language eng
recordid cdi_proquest_miscellaneous_73302421
source MEDLINE; Nature; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects 1-Phosphatidylinositol 3-kinase
17β-Estradiol
AKT protein
Animals
Antineoplastic Agents - pharmacology
Apoptosis
Apoptosis - drug effects
Biological and medical sciences
Blotting, Western
Cancer
Cancer Research
Cell Division - drug effects
Cell growth
Cell proliferation
Cell surface
Critical Care Medicine
Cytokines
Deprivation
Enzyme Inhibitors - pharmacology
Estrogen receptors
Estrogens
Extracellular signal-regulated kinase
Granulocytes
Hematologic and hematopoietic diseases
Hematology
Immunology
Inhibitors
Intensive
Interleukin 3
Interleukin-3 - pharmacology
Internal Medicine
Kinases
Leukemia
Leukemia, Myeloid - drug therapy
Leukemia, Myeloid - metabolism
Leukemia, Myeloid - pathology
Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis
Ligands
MAP Kinase Kinase 1
Medical sciences
Medicine
Medicine & Public Health
MEK inhibitors
Mice
Mitogen-Activated Protein Kinase 1 - metabolism
Mitogen-Activated Protein Kinase Kinases - genetics
Mitogen-Activated Protein Kinase Kinases - pharmacology
Oncology
original-manuscript
Phosphatidylinositol 3-Kinases - metabolism
Phosphorylation
Prevention
Protein kinase
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - pharmacology
Proto-Oncogene Proteins - metabolism
Proto-Oncogene Proteins c-akt
Proto-Oncogene Proteins c-raf - metabolism
Raf protein
Receptors
Receptors, Estrogen - metabolism
Retroviridae
Ribosomal protein S6 kinase
Ribosomal Protein S6 Kinases, 70-kDa - metabolism
Sex hormones
Signal transduction
Signal Transduction - drug effects
Signal Transduction - physiology
Tumor Cells, Cultured - drug effects
Tumor Cells, Cultured - metabolism
title Requirement for the PI3K Akt pathway in MEK1-mediated growth and prevention of apoptosis: identification of an Achilles heel in leukemia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Requirement%20for%20the%20PI3K%20Akt%20pathway%20in%20MEK1-mediated%20growth%20and%20prevention%20of%20apoptosis:%20identification%20of%20an%20Achilles%20heel%20in%20leukemia&rft.jtitle=Leukemia&rft.au=Blalock,%20W%20L&rft.date=2003-06-01&rft.volume=17&rft.issue=6&rft.spage=1058&rft.epage=1067&rft.pages=1058-1067&rft.issn=0887-6924&rft.eissn=1476-5551&rft.coden=LEUKED&rft_id=info:doi/10.1038/sj.leu.2402925&rft_dat=%3Cgale_proqu%3EA188519216%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=220561663&rft_id=info:pmid/12764369&rft_galeid=A188519216&rfr_iscdi=true