Requirement for the PI3K Akt pathway in MEK1-mediated growth and prevention of apoptosis: identification of an Achilles heel in leukemia
The Raf/MEK/ERK kinase cascade plays a critical role in transducing growth signals from activated cell surface receptors. Using ΔMEK1:ER, a conditionally active form of MEK1 which responds to either β -estradiol or the estrogen receptor antagonist 4 hydroxy-tamoxifen (4HT), we previously documented...
Gespeichert in:
Veröffentlicht in: | Leukemia 2003-06, Vol.17 (6), p.1058-1067 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1067 |
---|---|
container_issue | 6 |
container_start_page | 1058 |
container_title | Leukemia |
container_volume | 17 |
creator | Blalock, W L Navolanic, P M Steelman, L S Shelton, J G Moye, P W Lee, J T Franklin, R A Mirza, A McMahon, M White, M K McCubrey, J A |
description | The Raf/MEK/ERK kinase cascade plays a critical role in transducing growth signals from activated cell surface receptors. Using ΔMEK1:ER, a conditionally active form of MEK1 which responds to either
β
-estradiol or the estrogen receptor antagonist 4 hydroxy-tamoxifen (4HT), we previously documented the ability of this dual specificity protein kinase to abrogate the cytokine-dependency of human (TF-1) and murine (FDC-P1 and FL5.12) hematopoietic cells lines. Here we demonstrate the ability of ΔMEK1:ER to activate the phosphatidylinositol 3-kinase (PI3K)/Akt/p70 ribosomal S6 kinase (p70
S6K
) pathway and the importance of this pathway in MEK1-mediated prevention of apoptosis. MEK1-responsive cells can be maintained long term in the presence of
β
-estradiol, 4HT or IL-3. Removal of hormone led to the rapid cessation of cell proliferation and the induction of apoptosis in a manner similar to cytokine deprivation of the parental cells. Stimulation of ΔMEK1:ER by 4HT resulted in ERK, PI3K, Akt and p70
S6K
activation. Treatment with PI3K, Akt and p70
S6K
inhibitors prevented MEK-responsive growth. Furthermore, the apoptotic effects of PI3K/Akt/p70
S6K
inhibitors could be enhanced by cotreatment with MEK inhibitors. Use of a PI3K inhibitor and a constitutively active form of Akt, [ΔAkt(Myr
+
)], indicated that activation of PI3K was necessary for MEK1-responsive growth and survival as activation of Akt alone was unable to compensate for the loss of PI3K activity. Cells transduced by MEK or MEK+Akt displayed different sensitivities to signal transduction inhibitors, which targeted these pathways. These results indicate a requirement for the activation of the PI3K pathway during MEK-mediated transformation of certain hematopoietic cells. These experiments provide important clues as to why the identification of mutant signaling pathways may be the Achilles heel of leukemic cell growth. Leukemia treatment targeting multiple signal transduction pathways may be more efficacious than therapy aimed at inhibiting a single pathway. |
doi_str_mv | 10.1038/sj.leu.2402925 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_73302421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A188519216</galeid><sourcerecordid>A188519216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-323204db77c85e54c652fd997762b71984fb49105c796032cd683611b12512d63</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEoqVw5QayQHDL1mPHdtLbqipQtQiE4Bx5HWfjbdZObYeq_4CfjcOGLiBVyAdL8z7zPVn2HPACMC2Pw2bR63FBCkwqwh5kh1AInjPG4GF2iMtS5LwixUH2JIQNxpPIH2cHQAQvKK8Osx9f9PVovN5qG1HrPIqdRp_P6QVaXkU0yNjdyFtkLPp4dgH5VjdGRt2gtXc3sUPSNmjw-ntyNs4i1yI5uCG6YMIJMs1kbo2Sd6JFS9WZvtcBdVr3U9xU_ZXeGvk0e9TKPuhn83-UfXt39vX0Q3756f356fIyV0xUMaeEElw0KyFUyTQrFGekbapKCE5WAqqyaFdFBZgpUXFMiWp4STnACggD0nB6lL3dxR28ux51iPXWBKX7XlrtxlALSjEpCPwXhLIEAkAS-PofcONGb1MTNeEFE7gUjCbq1b0UwYwD5xO02EFr2eva2NZFL1V6TRqRcla3JtmXKTWDisAf3fxy6LTsYxdcP04TD3-Dc2TlXQhet_XgzVb62xpwPV1SHTZ12kU9X1JyeDnXO67S2vf4fDoJeDMDMijZt15aZcKeK0oAiifueMeFJNm19vvG7039YudhZRy9vgv5W_8JZb7niA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>220561663</pqid></control><display><type>article</type><title>Requirement for the PI3K Akt pathway in MEK1-mediated growth and prevention of apoptosis: identification of an Achilles heel in leukemia</title><source>MEDLINE</source><source>Nature</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Blalock, W L ; Navolanic, P M ; Steelman, L S ; Shelton, J G ; Moye, P W ; Lee, J T ; Franklin, R A ; Mirza, A ; McMahon, M ; White, M K ; McCubrey, J A</creator><creatorcontrib>Blalock, W L ; Navolanic, P M ; Steelman, L S ; Shelton, J G ; Moye, P W ; Lee, J T ; Franklin, R A ; Mirza, A ; McMahon, M ; White, M K ; McCubrey, J A</creatorcontrib><description>The Raf/MEK/ERK kinase cascade plays a critical role in transducing growth signals from activated cell surface receptors. Using ΔMEK1:ER, a conditionally active form of MEK1 which responds to either
β
-estradiol or the estrogen receptor antagonist 4 hydroxy-tamoxifen (4HT), we previously documented the ability of this dual specificity protein kinase to abrogate the cytokine-dependency of human (TF-1) and murine (FDC-P1 and FL5.12) hematopoietic cells lines. Here we demonstrate the ability of ΔMEK1:ER to activate the phosphatidylinositol 3-kinase (PI3K)/Akt/p70 ribosomal S6 kinase (p70
S6K
) pathway and the importance of this pathway in MEK1-mediated prevention of apoptosis. MEK1-responsive cells can be maintained long term in the presence of
β
-estradiol, 4HT or IL-3. Removal of hormone led to the rapid cessation of cell proliferation and the induction of apoptosis in a manner similar to cytokine deprivation of the parental cells. Stimulation of ΔMEK1:ER by 4HT resulted in ERK, PI3K, Akt and p70
S6K
activation. Treatment with PI3K, Akt and p70
S6K
inhibitors prevented MEK-responsive growth. Furthermore, the apoptotic effects of PI3K/Akt/p70
S6K
inhibitors could be enhanced by cotreatment with MEK inhibitors. Use of a PI3K inhibitor and a constitutively active form of Akt, [ΔAkt(Myr
+
)], indicated that activation of PI3K was necessary for MEK1-responsive growth and survival as activation of Akt alone was unable to compensate for the loss of PI3K activity. Cells transduced by MEK or MEK+Akt displayed different sensitivities to signal transduction inhibitors, which targeted these pathways. These results indicate a requirement for the activation of the PI3K pathway during MEK-mediated transformation of certain hematopoietic cells. These experiments provide important clues as to why the identification of mutant signaling pathways may be the Achilles heel of leukemic cell growth. Leukemia treatment targeting multiple signal transduction pathways may be more efficacious than therapy aimed at inhibiting a single pathway.</description><identifier>ISSN: 0887-6924</identifier><identifier>EISSN: 1476-5551</identifier><identifier>DOI: 10.1038/sj.leu.2402925</identifier><identifier>PMID: 12764369</identifier><identifier>CODEN: LEUKED</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>1-Phosphatidylinositol 3-kinase ; 17β-Estradiol ; AKT protein ; Animals ; Antineoplastic Agents - pharmacology ; Apoptosis ; Apoptosis - drug effects ; Biological and medical sciences ; Blotting, Western ; Cancer ; Cancer Research ; Cell Division - drug effects ; Cell growth ; Cell proliferation ; Cell surface ; Critical Care Medicine ; Cytokines ; Deprivation ; Enzyme Inhibitors - pharmacology ; Estrogen receptors ; Estrogens ; Extracellular signal-regulated kinase ; Granulocytes ; Hematologic and hematopoietic diseases ; Hematology ; Immunology ; Inhibitors ; Intensive ; Interleukin 3 ; Interleukin-3 - pharmacology ; Internal Medicine ; Kinases ; Leukemia ; Leukemia, Myeloid - drug therapy ; Leukemia, Myeloid - metabolism ; Leukemia, Myeloid - pathology ; Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis ; Ligands ; MAP Kinase Kinase 1 ; Medical sciences ; Medicine ; Medicine & Public Health ; MEK inhibitors ; Mice ; Mitogen-Activated Protein Kinase 1 - metabolism ; Mitogen-Activated Protein Kinase Kinases - genetics ; Mitogen-Activated Protein Kinase Kinases - pharmacology ; Oncology ; original-manuscript ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphorylation ; Prevention ; Protein kinase ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - pharmacology ; Proto-Oncogene Proteins - metabolism ; Proto-Oncogene Proteins c-akt ; Proto-Oncogene Proteins c-raf - metabolism ; Raf protein ; Receptors ; Receptors, Estrogen - metabolism ; Retroviridae ; Ribosomal protein S6 kinase ; Ribosomal Protein S6 Kinases, 70-kDa - metabolism ; Sex hormones ; Signal transduction ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Tumor Cells, Cultured - drug effects ; Tumor Cells, Cultured - metabolism</subject><ispartof>Leukemia, 2003-06, Vol.17 (6), p.1058-1067</ispartof><rights>Springer Nature Limited 2003</rights><rights>2003 INIST-CNRS</rights><rights>COPYRIGHT 2003 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 2003</rights><rights>Nature Publishing Group 2003.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-323204db77c85e54c652fd997762b71984fb49105c796032cd683611b12512d63</citedby><cites>FETCH-LOGICAL-c579t-323204db77c85e54c652fd997762b71984fb49105c796032cd683611b12512d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14811309$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12764369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blalock, W L</creatorcontrib><creatorcontrib>Navolanic, P M</creatorcontrib><creatorcontrib>Steelman, L S</creatorcontrib><creatorcontrib>Shelton, J G</creatorcontrib><creatorcontrib>Moye, P W</creatorcontrib><creatorcontrib>Lee, J T</creatorcontrib><creatorcontrib>Franklin, R A</creatorcontrib><creatorcontrib>Mirza, A</creatorcontrib><creatorcontrib>McMahon, M</creatorcontrib><creatorcontrib>White, M K</creatorcontrib><creatorcontrib>McCubrey, J A</creatorcontrib><title>Requirement for the PI3K Akt pathway in MEK1-mediated growth and prevention of apoptosis: identification of an Achilles heel in leukemia</title><title>Leukemia</title><addtitle>Leukemia</addtitle><addtitle>Leukemia</addtitle><description>The Raf/MEK/ERK kinase cascade plays a critical role in transducing growth signals from activated cell surface receptors. Using ΔMEK1:ER, a conditionally active form of MEK1 which responds to either
β
-estradiol or the estrogen receptor antagonist 4 hydroxy-tamoxifen (4HT), we previously documented the ability of this dual specificity protein kinase to abrogate the cytokine-dependency of human (TF-1) and murine (FDC-P1 and FL5.12) hematopoietic cells lines. Here we demonstrate the ability of ΔMEK1:ER to activate the phosphatidylinositol 3-kinase (PI3K)/Akt/p70 ribosomal S6 kinase (p70
S6K
) pathway and the importance of this pathway in MEK1-mediated prevention of apoptosis. MEK1-responsive cells can be maintained long term in the presence of
β
-estradiol, 4HT or IL-3. Removal of hormone led to the rapid cessation of cell proliferation and the induction of apoptosis in a manner similar to cytokine deprivation of the parental cells. Stimulation of ΔMEK1:ER by 4HT resulted in ERK, PI3K, Akt and p70
S6K
activation. Treatment with PI3K, Akt and p70
S6K
inhibitors prevented MEK-responsive growth. Furthermore, the apoptotic effects of PI3K/Akt/p70
S6K
inhibitors could be enhanced by cotreatment with MEK inhibitors. Use of a PI3K inhibitor and a constitutively active form of Akt, [ΔAkt(Myr
+
)], indicated that activation of PI3K was necessary for MEK1-responsive growth and survival as activation of Akt alone was unable to compensate for the loss of PI3K activity. Cells transduced by MEK or MEK+Akt displayed different sensitivities to signal transduction inhibitors, which targeted these pathways. These results indicate a requirement for the activation of the PI3K pathway during MEK-mediated transformation of certain hematopoietic cells. These experiments provide important clues as to why the identification of mutant signaling pathways may be the Achilles heel of leukemic cell growth. Leukemia treatment targeting multiple signal transduction pathways may be more efficacious than therapy aimed at inhibiting a single pathway.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>17β-Estradiol</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Biological and medical sciences</subject><subject>Blotting, Western</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Cell Division - drug effects</subject><subject>Cell growth</subject><subject>Cell proliferation</subject><subject>Cell surface</subject><subject>Critical Care Medicine</subject><subject>Cytokines</subject><subject>Deprivation</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Estrogen receptors</subject><subject>Estrogens</subject><subject>Extracellular signal-regulated kinase</subject><subject>Granulocytes</subject><subject>Hematologic and hematopoietic diseases</subject><subject>Hematology</subject><subject>Immunology</subject><subject>Inhibitors</subject><subject>Intensive</subject><subject>Interleukin 3</subject><subject>Interleukin-3 - pharmacology</subject><subject>Internal Medicine</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Leukemia, Myeloid - drug therapy</subject><subject>Leukemia, Myeloid - metabolism</subject><subject>Leukemia, Myeloid - pathology</subject><subject>Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis</subject><subject>Ligands</subject><subject>MAP Kinase Kinase 1</subject><subject>Medical sciences</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>MEK inhibitors</subject><subject>Mice</subject><subject>Mitogen-Activated Protein Kinase 1 - metabolism</subject><subject>Mitogen-Activated Protein Kinase Kinases - genetics</subject><subject>Mitogen-Activated Protein Kinase Kinases - pharmacology</subject><subject>Oncology</subject><subject>original-manuscript</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Prevention</subject><subject>Protein kinase</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - pharmacology</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Proto-Oncogene Proteins c-akt</subject><subject>Proto-Oncogene Proteins c-raf - metabolism</subject><subject>Raf protein</subject><subject>Receptors</subject><subject>Receptors, Estrogen - metabolism</subject><subject>Retroviridae</subject><subject>Ribosomal protein S6 kinase</subject><subject>Ribosomal Protein S6 Kinases, 70-kDa - metabolism</subject><subject>Sex hormones</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Tumor Cells, Cultured - drug effects</subject><subject>Tumor Cells, Cultured - metabolism</subject><issn>0887-6924</issn><issn>1476-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkk1v1DAQhiMEoqVw5QayQHDL1mPHdtLbqipQtQiE4Bx5HWfjbdZObYeq_4CfjcOGLiBVyAdL8z7zPVn2HPACMC2Pw2bR63FBCkwqwh5kh1AInjPG4GF2iMtS5LwixUH2JIQNxpPIH2cHQAQvKK8Osx9f9PVovN5qG1HrPIqdRp_P6QVaXkU0yNjdyFtkLPp4dgH5VjdGRt2gtXc3sUPSNmjw-ntyNs4i1yI5uCG6YMIJMs1kbo2Sd6JFS9WZvtcBdVr3U9xU_ZXeGvk0e9TKPuhn83-UfXt39vX0Q3756f356fIyV0xUMaeEElw0KyFUyTQrFGekbapKCE5WAqqyaFdFBZgpUXFMiWp4STnACggD0nB6lL3dxR28ux51iPXWBKX7XlrtxlALSjEpCPwXhLIEAkAS-PofcONGb1MTNeEFE7gUjCbq1b0UwYwD5xO02EFr2eva2NZFL1V6TRqRcla3JtmXKTWDisAf3fxy6LTsYxdcP04TD3-Dc2TlXQhet_XgzVb62xpwPV1SHTZ12kU9X1JyeDnXO67S2vf4fDoJeDMDMijZt15aZcKeK0oAiifueMeFJNm19vvG7039YudhZRy9vgv5W_8JZb7niA</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Blalock, W L</creator><creator>Navolanic, P M</creator><creator>Steelman, L S</creator><creator>Shelton, J G</creator><creator>Moye, P W</creator><creator>Lee, J T</creator><creator>Franklin, R A</creator><creator>Mirza, A</creator><creator>McMahon, M</creator><creator>White, M K</creator><creator>McCubrey, J A</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20030601</creationdate><title>Requirement for the PI3K Akt pathway in MEK1-mediated growth and prevention of apoptosis: identification of an Achilles heel in leukemia</title><author>Blalock, W L ; Navolanic, P M ; Steelman, L S ; Shelton, J G ; Moye, P W ; Lee, J T ; Franklin, R A ; Mirza, A ; McMahon, M ; White, M K ; McCubrey, J A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-323204db77c85e54c652fd997762b71984fb49105c796032cd683611b12512d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>17β-Estradiol</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Biological and medical sciences</topic><topic>Blotting, Western</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Cell Division - drug effects</topic><topic>Cell growth</topic><topic>Cell proliferation</topic><topic>Cell surface</topic><topic>Critical Care Medicine</topic><topic>Cytokines</topic><topic>Deprivation</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Estrogen receptors</topic><topic>Estrogens</topic><topic>Extracellular signal-regulated kinase</topic><topic>Granulocytes</topic><topic>Hematologic and hematopoietic diseases</topic><topic>Hematology</topic><topic>Immunology</topic><topic>Inhibitors</topic><topic>Intensive</topic><topic>Interleukin 3</topic><topic>Interleukin-3 - pharmacology</topic><topic>Internal Medicine</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Leukemia, Myeloid - drug therapy</topic><topic>Leukemia, Myeloid - metabolism</topic><topic>Leukemia, Myeloid - pathology</topic><topic>Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis</topic><topic>Ligands</topic><topic>MAP Kinase Kinase 1</topic><topic>Medical sciences</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>MEK inhibitors</topic><topic>Mice</topic><topic>Mitogen-Activated Protein Kinase 1 - metabolism</topic><topic>Mitogen-Activated Protein Kinase Kinases - genetics</topic><topic>Mitogen-Activated Protein Kinase Kinases - pharmacology</topic><topic>Oncology</topic><topic>original-manuscript</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Prevention</topic><topic>Protein kinase</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - pharmacology</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Proto-Oncogene Proteins c-akt</topic><topic>Proto-Oncogene Proteins c-raf - metabolism</topic><topic>Raf protein</topic><topic>Receptors</topic><topic>Receptors, Estrogen - metabolism</topic><topic>Retroviridae</topic><topic>Ribosomal protein S6 kinase</topic><topic>Ribosomal Protein S6 Kinases, 70-kDa - metabolism</topic><topic>Sex hormones</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Tumor Cells, Cultured - drug effects</topic><topic>Tumor Cells, Cultured - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blalock, W L</creatorcontrib><creatorcontrib>Navolanic, P M</creatorcontrib><creatorcontrib>Steelman, L S</creatorcontrib><creatorcontrib>Shelton, J G</creatorcontrib><creatorcontrib>Moye, P W</creatorcontrib><creatorcontrib>Lee, J T</creatorcontrib><creatorcontrib>Franklin, R A</creatorcontrib><creatorcontrib>Mirza, A</creatorcontrib><creatorcontrib>McMahon, M</creatorcontrib><creatorcontrib>White, M K</creatorcontrib><creatorcontrib>McCubrey, J A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing & Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Leukemia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blalock, W L</au><au>Navolanic, P M</au><au>Steelman, L S</au><au>Shelton, J G</au><au>Moye, P W</au><au>Lee, J T</au><au>Franklin, R A</au><au>Mirza, A</au><au>McMahon, M</au><au>White, M K</au><au>McCubrey, J A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Requirement for the PI3K Akt pathway in MEK1-mediated growth and prevention of apoptosis: identification of an Achilles heel in leukemia</atitle><jtitle>Leukemia</jtitle><stitle>Leukemia</stitle><addtitle>Leukemia</addtitle><date>2003-06-01</date><risdate>2003</risdate><volume>17</volume><issue>6</issue><spage>1058</spage><epage>1067</epage><pages>1058-1067</pages><issn>0887-6924</issn><eissn>1476-5551</eissn><coden>LEUKED</coden><abstract>The Raf/MEK/ERK kinase cascade plays a critical role in transducing growth signals from activated cell surface receptors. Using ΔMEK1:ER, a conditionally active form of MEK1 which responds to either
β
-estradiol or the estrogen receptor antagonist 4 hydroxy-tamoxifen (4HT), we previously documented the ability of this dual specificity protein kinase to abrogate the cytokine-dependency of human (TF-1) and murine (FDC-P1 and FL5.12) hematopoietic cells lines. Here we demonstrate the ability of ΔMEK1:ER to activate the phosphatidylinositol 3-kinase (PI3K)/Akt/p70 ribosomal S6 kinase (p70
S6K
) pathway and the importance of this pathway in MEK1-mediated prevention of apoptosis. MEK1-responsive cells can be maintained long term in the presence of
β
-estradiol, 4HT or IL-3. Removal of hormone led to the rapid cessation of cell proliferation and the induction of apoptosis in a manner similar to cytokine deprivation of the parental cells. Stimulation of ΔMEK1:ER by 4HT resulted in ERK, PI3K, Akt and p70
S6K
activation. Treatment with PI3K, Akt and p70
S6K
inhibitors prevented MEK-responsive growth. Furthermore, the apoptotic effects of PI3K/Akt/p70
S6K
inhibitors could be enhanced by cotreatment with MEK inhibitors. Use of a PI3K inhibitor and a constitutively active form of Akt, [ΔAkt(Myr
+
)], indicated that activation of PI3K was necessary for MEK1-responsive growth and survival as activation of Akt alone was unable to compensate for the loss of PI3K activity. Cells transduced by MEK or MEK+Akt displayed different sensitivities to signal transduction inhibitors, which targeted these pathways. These results indicate a requirement for the activation of the PI3K pathway during MEK-mediated transformation of certain hematopoietic cells. These experiments provide important clues as to why the identification of mutant signaling pathways may be the Achilles heel of leukemic cell growth. Leukemia treatment targeting multiple signal transduction pathways may be more efficacious than therapy aimed at inhibiting a single pathway.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>12764369</pmid><doi>10.1038/sj.leu.2402925</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-6924 |
ispartof | Leukemia, 2003-06, Vol.17 (6), p.1058-1067 |
issn | 0887-6924 1476-5551 |
language | eng |
recordid | cdi_proquest_miscellaneous_73302421 |
source | MEDLINE; Nature; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | 1-Phosphatidylinositol 3-kinase 17β-Estradiol AKT protein Animals Antineoplastic Agents - pharmacology Apoptosis Apoptosis - drug effects Biological and medical sciences Blotting, Western Cancer Cancer Research Cell Division - drug effects Cell growth Cell proliferation Cell surface Critical Care Medicine Cytokines Deprivation Enzyme Inhibitors - pharmacology Estrogen receptors Estrogens Extracellular signal-regulated kinase Granulocytes Hematologic and hematopoietic diseases Hematology Immunology Inhibitors Intensive Interleukin 3 Interleukin-3 - pharmacology Internal Medicine Kinases Leukemia Leukemia, Myeloid - drug therapy Leukemia, Myeloid - metabolism Leukemia, Myeloid - pathology Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis Ligands MAP Kinase Kinase 1 Medical sciences Medicine Medicine & Public Health MEK inhibitors Mice Mitogen-Activated Protein Kinase 1 - metabolism Mitogen-Activated Protein Kinase Kinases - genetics Mitogen-Activated Protein Kinase Kinases - pharmacology Oncology original-manuscript Phosphatidylinositol 3-Kinases - metabolism Phosphorylation Prevention Protein kinase Protein-Serine-Threonine Kinases - genetics Protein-Serine-Threonine Kinases - pharmacology Proto-Oncogene Proteins - metabolism Proto-Oncogene Proteins c-akt Proto-Oncogene Proteins c-raf - metabolism Raf protein Receptors Receptors, Estrogen - metabolism Retroviridae Ribosomal protein S6 kinase Ribosomal Protein S6 Kinases, 70-kDa - metabolism Sex hormones Signal transduction Signal Transduction - drug effects Signal Transduction - physiology Tumor Cells, Cultured - drug effects Tumor Cells, Cultured - metabolism |
title | Requirement for the PI3K Akt pathway in MEK1-mediated growth and prevention of apoptosis: identification of an Achilles heel in leukemia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Requirement%20for%20the%20PI3K%20Akt%20pathway%20in%20MEK1-mediated%20growth%20and%20prevention%20of%20apoptosis:%20identification%20of%20an%20Achilles%20heel%20in%20leukemia&rft.jtitle=Leukemia&rft.au=Blalock,%20W%20L&rft.date=2003-06-01&rft.volume=17&rft.issue=6&rft.spage=1058&rft.epage=1067&rft.pages=1058-1067&rft.issn=0887-6924&rft.eissn=1476-5551&rft.coden=LEUKED&rft_id=info:doi/10.1038/sj.leu.2402925&rft_dat=%3Cgale_proqu%3EA188519216%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=220561663&rft_id=info:pmid/12764369&rft_galeid=A188519216&rfr_iscdi=true |