Oscillating laminar electrokinetic flow in infinitely extended circular microchannels

This article addresses the problem of oscillating laminar electrokinetic liquid flow in an infinitely extended circular microchannel. Based on the Debye–Huckel approximation for low surface potential at the channel wall, a complex variable approach is used to obtain an analytical solution for the fl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2003-05, Vol.261 (1), p.12-20
Hauptverfasser: Bhattacharyya, A, Masliyah, J.H, Yang, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 1
container_start_page 12
container_title Journal of colloid and interface science
container_volume 261
creator Bhattacharyya, A
Masliyah, J.H
Yang, J
description This article addresses the problem of oscillating laminar electrokinetic liquid flow in an infinitely extended circular microchannel. Based on the Debye–Huckel approximation for low surface potential at the channel wall, a complex variable approach is used to obtain an analytical solution for the flow. The complex counterparts of the flow rate and the current are linearly dependent on the pressure gradient and the external electric field. This property is used to show that Onsager's principle of reciprocity continues to be valid (involving the complex quantities) for the stated problem. During oscillating pressure-driven flow, the electroviscous effect for a given value of the normalized reciprocal electrical double-layer (EDL) thickness is observed to attain a maximum at a certain normalized frequency. In general, an increasing normalized frequency results in a reduction of EDL effects, leading to (i) a volumetric flow rate in the case of streaming potential approaching that predicted by the theory without EDL effects, and (ii) a reduction in the volumetric flow rate in the case of electroosmosis.
doi_str_mv 10.1016/S0021-9797(02)00050-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73236407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979702000504</els_id><sourcerecordid>73236407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-deaa6b444b6f183c7d2c0bb1befb6c26f441e90318cc16735320a25903c1a2a03</originalsourceid><addsrcrecordid>eNqFkE1rFTEUhoMo9vbjJyizUepi9OT7zqpIUSsUutCuQ-bMGZs2k2mTudb-e9Pei10KBwKH503ePIy94fCRAzeffgAI3na2s8cgPgCAhla9YCsOnW4tB_mSrf4he2y_lGsAzrXuXrM9LqzQa96t2OVFwRCjX0L61UQ_heRzQ5FwyfNNSLQEbMY43zch1RlDCgvFh4b-LJQGGhoMGTexZqaAecYrnxLFcshejT4WOtqdB-zy65efp2ft-cW376efz1tUSi7tQN6bXinVm5GvJdpBIPQ972nsDQozKsWpA8nXiNxYqaUAL3TdIPfCgzxg77f33ub5bkNlcVMoSPU_ieZNcVYKaRTYCuotWEuWkml0tzlMPj84Du7Rp3vy6R5lORDuyadTNfd298Cmn2h4Tu0EVuDdDvAFfRyzTxjKM6fs2oA2lTvZctUO_Q6UXfVOCWkIucp2wxz-U-UvaayTCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73236407</pqid></control><display><type>article</type><title>Oscillating laminar electrokinetic flow in infinitely extended circular microchannels</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bhattacharyya, A ; Masliyah, J.H ; Yang, J</creator><creatorcontrib>Bhattacharyya, A ; Masliyah, J.H ; Yang, J</creatorcontrib><description>This article addresses the problem of oscillating laminar electrokinetic liquid flow in an infinitely extended circular microchannel. Based on the Debye–Huckel approximation for low surface potential at the channel wall, a complex variable approach is used to obtain an analytical solution for the flow. The complex counterparts of the flow rate and the current are linearly dependent on the pressure gradient and the external electric field. This property is used to show that Onsager's principle of reciprocity continues to be valid (involving the complex quantities) for the stated problem. During oscillating pressure-driven flow, the electroviscous effect for a given value of the normalized reciprocal electrical double-layer (EDL) thickness is observed to attain a maximum at a certain normalized frequency. In general, an increasing normalized frequency results in a reduction of EDL effects, leading to (i) a volumetric flow rate in the case of streaming potential approaching that predicted by the theory without EDL effects, and (ii) a reduction in the volumetric flow rate in the case of electroosmosis.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/S0021-9797(02)00050-4</identifier><identifier>PMID: 12725819</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Applied fluid mechanics ; Applied sciences ; Electrokinetic ; Electroosmosis ; Exact sciences and technology ; Fluid dynamics ; Fluidics ; Fundamental areas of phenomenology (including applications) ; Mechanical engineering. Machine design ; Oscillating ; Physics ; Precision engineering, watch making ; Streaming potential</subject><ispartof>Journal of colloid and interface science, 2003-05, Vol.261 (1), p.12-20</ispartof><rights>2003 Elsevier Science (USA)</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-deaa6b444b6f183c7d2c0bb1befb6c26f441e90318cc16735320a25903c1a2a03</citedby><cites>FETCH-LOGICAL-c443t-deaa6b444b6f183c7d2c0bb1befb6c26f441e90318cc16735320a25903c1a2a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0021-9797(02)00050-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14786056$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12725819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhattacharyya, A</creatorcontrib><creatorcontrib>Masliyah, J.H</creatorcontrib><creatorcontrib>Yang, J</creatorcontrib><title>Oscillating laminar electrokinetic flow in infinitely extended circular microchannels</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>This article addresses the problem of oscillating laminar electrokinetic liquid flow in an infinitely extended circular microchannel. Based on the Debye–Huckel approximation for low surface potential at the channel wall, a complex variable approach is used to obtain an analytical solution for the flow. The complex counterparts of the flow rate and the current are linearly dependent on the pressure gradient and the external electric field. This property is used to show that Onsager's principle of reciprocity continues to be valid (involving the complex quantities) for the stated problem. During oscillating pressure-driven flow, the electroviscous effect for a given value of the normalized reciprocal electrical double-layer (EDL) thickness is observed to attain a maximum at a certain normalized frequency. In general, an increasing normalized frequency results in a reduction of EDL effects, leading to (i) a volumetric flow rate in the case of streaming potential approaching that predicted by the theory without EDL effects, and (ii) a reduction in the volumetric flow rate in the case of electroosmosis.</description><subject>Applied fluid mechanics</subject><subject>Applied sciences</subject><subject>Electrokinetic</subject><subject>Electroosmosis</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluidics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mechanical engineering. Machine design</subject><subject>Oscillating</subject><subject>Physics</subject><subject>Precision engineering, watch making</subject><subject>Streaming potential</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rFTEUhoMo9vbjJyizUepi9OT7zqpIUSsUutCuQ-bMGZs2k2mTudb-e9Pei10KBwKH503ePIy94fCRAzeffgAI3na2s8cgPgCAhla9YCsOnW4tB_mSrf4he2y_lGsAzrXuXrM9LqzQa96t2OVFwRCjX0L61UQ_heRzQ5FwyfNNSLQEbMY43zch1RlDCgvFh4b-LJQGGhoMGTexZqaAecYrnxLFcshejT4WOtqdB-zy65efp2ft-cW376efz1tUSi7tQN6bXinVm5GvJdpBIPQ972nsDQozKsWpA8nXiNxYqaUAL3TdIPfCgzxg77f33ub5bkNlcVMoSPU_ieZNcVYKaRTYCuotWEuWkml0tzlMPj84Du7Rp3vy6R5lORDuyadTNfd298Cmn2h4Tu0EVuDdDvAFfRyzTxjKM6fs2oA2lTvZctUO_Q6UXfVOCWkIucp2wxz-U-UvaayTCw</recordid><startdate>20030501</startdate><enddate>20030501</enddate><creator>Bhattacharyya, A</creator><creator>Masliyah, J.H</creator><creator>Yang, J</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030501</creationdate><title>Oscillating laminar electrokinetic flow in infinitely extended circular microchannels</title><author>Bhattacharyya, A ; Masliyah, J.H ; Yang, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-deaa6b444b6f183c7d2c0bb1befb6c26f441e90318cc16735320a25903c1a2a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied fluid mechanics</topic><topic>Applied sciences</topic><topic>Electrokinetic</topic><topic>Electroosmosis</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluidics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mechanical engineering. Machine design</topic><topic>Oscillating</topic><topic>Physics</topic><topic>Precision engineering, watch making</topic><topic>Streaming potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhattacharyya, A</creatorcontrib><creatorcontrib>Masliyah, J.H</creatorcontrib><creatorcontrib>Yang, J</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhattacharyya, A</au><au>Masliyah, J.H</au><au>Yang, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oscillating laminar electrokinetic flow in infinitely extended circular microchannels</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2003-05-01</date><risdate>2003</risdate><volume>261</volume><issue>1</issue><spage>12</spage><epage>20</epage><pages>12-20</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>This article addresses the problem of oscillating laminar electrokinetic liquid flow in an infinitely extended circular microchannel. Based on the Debye–Huckel approximation for low surface potential at the channel wall, a complex variable approach is used to obtain an analytical solution for the flow. The complex counterparts of the flow rate and the current are linearly dependent on the pressure gradient and the external electric field. This property is used to show that Onsager's principle of reciprocity continues to be valid (involving the complex quantities) for the stated problem. During oscillating pressure-driven flow, the electroviscous effect for a given value of the normalized reciprocal electrical double-layer (EDL) thickness is observed to attain a maximum at a certain normalized frequency. In general, an increasing normalized frequency results in a reduction of EDL effects, leading to (i) a volumetric flow rate in the case of streaming potential approaching that predicted by the theory without EDL effects, and (ii) a reduction in the volumetric flow rate in the case of electroosmosis.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><pmid>12725819</pmid><doi>10.1016/S0021-9797(02)00050-4</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2003-05, Vol.261 (1), p.12-20
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_73236407
source Access via ScienceDirect (Elsevier)
subjects Applied fluid mechanics
Applied sciences
Electrokinetic
Electroosmosis
Exact sciences and technology
Fluid dynamics
Fluidics
Fundamental areas of phenomenology (including applications)
Mechanical engineering. Machine design
Oscillating
Physics
Precision engineering, watch making
Streaming potential
title Oscillating laminar electrokinetic flow in infinitely extended circular microchannels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oscillating%20laminar%20electrokinetic%20flow%20in%20infinitely%20extended%20circular%20microchannels&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Bhattacharyya,%20A&rft.date=2003-05-01&rft.volume=261&rft.issue=1&rft.spage=12&rft.epage=20&rft.pages=12-20&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1016/S0021-9797(02)00050-4&rft_dat=%3Cproquest_cross%3E73236407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73236407&rft_id=info:pmid/12725819&rft_els_id=S0021979702000504&rfr_iscdi=true