Structural degradation of acrylic bone cements due to in vivo and simulated aging

Acrylic bone cement is the primary load‐bearing material used for the attachment of orthopedic devices to adjoining bone. Degradation of acrylic‐based cements in vivo results in a loss of structural integrity of the bone‐cement‐prosthesis interface and limits the longevity of cemented orthopedic imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research 2003-05, Vol.65A (2), p.126-135
Hauptverfasser: Hughes, Kerry F., Ries, Michael D., Pruitt, Lisa A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 135
container_issue 2
container_start_page 126
container_title Journal of biomedical materials research
container_volume 65A
creator Hughes, Kerry F.
Ries, Michael D.
Pruitt, Lisa A.
description Acrylic bone cement is the primary load‐bearing material used for the attachment of orthopedic devices to adjoining bone. Degradation of acrylic‐based cements in vivo results in a loss of structural integrity of the bone‐cement‐prosthesis interface and limits the longevity of cemented orthopedic implants. The purpose of this study is to investigate the effect of in vivo aging on the structure of the acrylic bone cement and to develop an in vitro artificial aging protocol that mimics the observed degradation. Three sets of retrievals are examined in this study: Palacos® brand cement retrieved from hip replacements, and Simplex® brand cement retrieved from both hip and knee replacement surgeries. In vitro aging is performed using oxidative and acidic environments on three acrylic‐based cements: Palacos®, Simplex®, and CORE®. Gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR) are used to examine the evolution of molecular weight and chemical species within the acrylic cements due to both in vivo and simulated aging. GPC analysis indicates that molecular weight is degraded in the hip retrievals but not in the knee retrievals. Artificial aging in an oxidative environment best reproduces this degradation mechanism. FTIR analysis indicates that there exists a chemical evolution within the cement due to in vivo and in vitro aging. These findings are consistent with scission‐based degradation schemes in the cement. Based on the results of this study, a pathway for structural degradation of acrylic bone cement is proposed. The findings from this investigation have broad applicability to acrylic‐based cements and may provide guidance for the development of new bone cements that resist degradation in the body. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res 65A: 126–135, 2003
doi_str_mv 10.1002/jbm.a.10373
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73236325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18735672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4573-61cc0b31362960c7bfd918fecad0627655487a3fce5405adfd5368ae0cd463663</originalsourceid><addsrcrecordid>eNqF0ctPFTEUB-DGSOShK_ekG92Ywbanj5mlEgXJRaNISNw0Z9rOTWEe2M4A97934F5lJ6uexXce6Y-Q15wdcMbE-8u6O8C5BAPPyA5XShSy0ur5fS2rAkSlt8luzpcz1kyJF2SbCwOyZHKHfD8b0-TGKWFLfVgm9DjGoadDQ9GlVRsdrYc-UBe60I-Z-inQcaCxpzfxZqDYe5pjN7U4Bk9xGfvlS7LVYJvDq827R84_f_p5eFwsvh19OfywKJxUBgrNnWM1cNDzfcyZuvEVL5vg0DMtjFZKlgahcUFJptA3XoEuMTDnpQatYY-8Xc-9TsPvKeTRdjG70LbYh2HK1oAADUI9CUU5fwxU8knISwNKGzHDd2vo0pBzCo29TrHDtLKc2ftM7JyJRfuQyaz3N2Onugv-0W5CmMGbDcDssG0S9i7mRyeNrMqH-_ja3cY2rP630558PP27vFj3xDyGu389mK6sNmCUvfh6ZE_OfpQLKX5ZgD-AWLIX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18735672</pqid></control><display><type>article</type><title>Structural degradation of acrylic bone cements due to in vivo and simulated aging</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hughes, Kerry F. ; Ries, Michael D. ; Pruitt, Lisa A.</creator><creatorcontrib>Hughes, Kerry F. ; Ries, Michael D. ; Pruitt, Lisa A.</creatorcontrib><description>Acrylic bone cement is the primary load‐bearing material used for the attachment of orthopedic devices to adjoining bone. Degradation of acrylic‐based cements in vivo results in a loss of structural integrity of the bone‐cement‐prosthesis interface and limits the longevity of cemented orthopedic implants. The purpose of this study is to investigate the effect of in vivo aging on the structure of the acrylic bone cement and to develop an in vitro artificial aging protocol that mimics the observed degradation. Three sets of retrievals are examined in this study: Palacos® brand cement retrieved from hip replacements, and Simplex® brand cement retrieved from both hip and knee replacement surgeries. In vitro aging is performed using oxidative and acidic environments on three acrylic‐based cements: Palacos®, Simplex®, and CORE®. Gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR) are used to examine the evolution of molecular weight and chemical species within the acrylic cements due to both in vivo and simulated aging. GPC analysis indicates that molecular weight is degraded in the hip retrievals but not in the knee retrievals. Artificial aging in an oxidative environment best reproduces this degradation mechanism. FTIR analysis indicates that there exists a chemical evolution within the cement due to in vivo and in vitro aging. These findings are consistent with scission‐based degradation schemes in the cement. Based on the results of this study, a pathway for structural degradation of acrylic bone cement is proposed. The findings from this investigation have broad applicability to acrylic‐based cements and may provide guidance for the development of new bone cements that resist degradation in the body. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res 65A: 126–135, 2003</description><identifier>ISSN: 1549-3296</identifier><identifier>ISSN: 0021-9304</identifier><identifier>EISSN: 1552-4965</identifier><identifier>EISSN: 1097-4636</identifier><identifier>DOI: 10.1002/jbm.a.10373</identifier><identifier>PMID: 12734804</identifier><identifier>CODEN: JBMRBG</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Acrylates - chemistry ; acrylic bone cement ; Biocompatible Materials - chemistry ; Biological and medical sciences ; Bone Cements - chemistry ; Chromatography, Gel ; Drug Stability ; hip and knee replacement ; Hip Prosthesis ; Humans ; Knee Prosthesis ; Medical sciences ; Molecular Weight ; molecular weight degradation ; Structure-Activity Relationship ; Time Factors ; Viscosity ; Zirconium - chemistry</subject><ispartof>Journal of biomedical materials research, 2003-05, Vol.65A (2), p.126-135</ispartof><rights>Copyright © 2003 Wiley Periodicals, Inc.</rights><rights>2003 INIST-CNRS</rights><rights>Copyright 2003 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4573-61cc0b31362960c7bfd918fecad0627655487a3fce5405adfd5368ae0cd463663</citedby><cites>FETCH-LOGICAL-c4573-61cc0b31362960c7bfd918fecad0627655487a3fce5405adfd5368ae0cd463663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.10373$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.10373$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14749894$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12734804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hughes, Kerry F.</creatorcontrib><creatorcontrib>Ries, Michael D.</creatorcontrib><creatorcontrib>Pruitt, Lisa A.</creatorcontrib><title>Structural degradation of acrylic bone cements due to in vivo and simulated aging</title><title>Journal of biomedical materials research</title><addtitle>J. Biomed. Mater. Res</addtitle><description>Acrylic bone cement is the primary load‐bearing material used for the attachment of orthopedic devices to adjoining bone. Degradation of acrylic‐based cements in vivo results in a loss of structural integrity of the bone‐cement‐prosthesis interface and limits the longevity of cemented orthopedic implants. The purpose of this study is to investigate the effect of in vivo aging on the structure of the acrylic bone cement and to develop an in vitro artificial aging protocol that mimics the observed degradation. Three sets of retrievals are examined in this study: Palacos® brand cement retrieved from hip replacements, and Simplex® brand cement retrieved from both hip and knee replacement surgeries. In vitro aging is performed using oxidative and acidic environments on three acrylic‐based cements: Palacos®, Simplex®, and CORE®. Gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR) are used to examine the evolution of molecular weight and chemical species within the acrylic cements due to both in vivo and simulated aging. GPC analysis indicates that molecular weight is degraded in the hip retrievals but not in the knee retrievals. Artificial aging in an oxidative environment best reproduces this degradation mechanism. FTIR analysis indicates that there exists a chemical evolution within the cement due to in vivo and in vitro aging. These findings are consistent with scission‐based degradation schemes in the cement. Based on the results of this study, a pathway for structural degradation of acrylic bone cement is proposed. The findings from this investigation have broad applicability to acrylic‐based cements and may provide guidance for the development of new bone cements that resist degradation in the body. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res 65A: 126–135, 2003</description><subject>Acrylates - chemistry</subject><subject>acrylic bone cement</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biological and medical sciences</subject><subject>Bone Cements - chemistry</subject><subject>Chromatography, Gel</subject><subject>Drug Stability</subject><subject>hip and knee replacement</subject><subject>Hip Prosthesis</subject><subject>Humans</subject><subject>Knee Prosthesis</subject><subject>Medical sciences</subject><subject>Molecular Weight</subject><subject>molecular weight degradation</subject><subject>Structure-Activity Relationship</subject><subject>Time Factors</subject><subject>Viscosity</subject><subject>Zirconium - chemistry</subject><issn>1549-3296</issn><issn>0021-9304</issn><issn>1552-4965</issn><issn>1097-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0ctPFTEUB-DGSOShK_ekG92Ywbanj5mlEgXJRaNISNw0Z9rOTWEe2M4A97934F5lJ6uexXce6Y-Q15wdcMbE-8u6O8C5BAPPyA5XShSy0ur5fS2rAkSlt8luzpcz1kyJF2SbCwOyZHKHfD8b0-TGKWFLfVgm9DjGoadDQ9GlVRsdrYc-UBe60I-Z-inQcaCxpzfxZqDYe5pjN7U4Bk9xGfvlS7LVYJvDq827R84_f_p5eFwsvh19OfywKJxUBgrNnWM1cNDzfcyZuvEVL5vg0DMtjFZKlgahcUFJptA3XoEuMTDnpQatYY-8Xc-9TsPvKeTRdjG70LbYh2HK1oAADUI9CUU5fwxU8knISwNKGzHDd2vo0pBzCo29TrHDtLKc2ftM7JyJRfuQyaz3N2Onugv-0W5CmMGbDcDssG0S9i7mRyeNrMqH-_ja3cY2rP630558PP27vFj3xDyGu389mK6sNmCUvfh6ZE_OfpQLKX5ZgD-AWLIX</recordid><startdate>20030501</startdate><enddate>20030501</enddate><creator>Hughes, Kerry F.</creator><creator>Ries, Michael D.</creator><creator>Pruitt, Lisa A.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>John Wiley &amp; Sons</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>20030501</creationdate><title>Structural degradation of acrylic bone cements due to in vivo and simulated aging</title><author>Hughes, Kerry F. ; Ries, Michael D. ; Pruitt, Lisa A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4573-61cc0b31362960c7bfd918fecad0627655487a3fce5405adfd5368ae0cd463663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Acrylates - chemistry</topic><topic>acrylic bone cement</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biological and medical sciences</topic><topic>Bone Cements - chemistry</topic><topic>Chromatography, Gel</topic><topic>Drug Stability</topic><topic>hip and knee replacement</topic><topic>Hip Prosthesis</topic><topic>Humans</topic><topic>Knee Prosthesis</topic><topic>Medical sciences</topic><topic>Molecular Weight</topic><topic>molecular weight degradation</topic><topic>Structure-Activity Relationship</topic><topic>Time Factors</topic><topic>Viscosity</topic><topic>Zirconium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hughes, Kerry F.</creatorcontrib><creatorcontrib>Ries, Michael D.</creatorcontrib><creatorcontrib>Pruitt, Lisa A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hughes, Kerry F.</au><au>Ries, Michael D.</au><au>Pruitt, Lisa A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural degradation of acrylic bone cements due to in vivo and simulated aging</atitle><jtitle>Journal of biomedical materials research</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2003-05-01</date><risdate>2003</risdate><volume>65A</volume><issue>2</issue><spage>126</spage><epage>135</epage><pages>126-135</pages><issn>1549-3296</issn><issn>0021-9304</issn><eissn>1552-4965</eissn><eissn>1097-4636</eissn><coden>JBMRBG</coden><abstract>Acrylic bone cement is the primary load‐bearing material used for the attachment of orthopedic devices to adjoining bone. Degradation of acrylic‐based cements in vivo results in a loss of structural integrity of the bone‐cement‐prosthesis interface and limits the longevity of cemented orthopedic implants. The purpose of this study is to investigate the effect of in vivo aging on the structure of the acrylic bone cement and to develop an in vitro artificial aging protocol that mimics the observed degradation. Three sets of retrievals are examined in this study: Palacos® brand cement retrieved from hip replacements, and Simplex® brand cement retrieved from both hip and knee replacement surgeries. In vitro aging is performed using oxidative and acidic environments on three acrylic‐based cements: Palacos®, Simplex®, and CORE®. Gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR) are used to examine the evolution of molecular weight and chemical species within the acrylic cements due to both in vivo and simulated aging. GPC analysis indicates that molecular weight is degraded in the hip retrievals but not in the knee retrievals. Artificial aging in an oxidative environment best reproduces this degradation mechanism. FTIR analysis indicates that there exists a chemical evolution within the cement due to in vivo and in vitro aging. These findings are consistent with scission‐based degradation schemes in the cement. Based on the results of this study, a pathway for structural degradation of acrylic bone cement is proposed. The findings from this investigation have broad applicability to acrylic‐based cements and may provide guidance for the development of new bone cements that resist degradation in the body. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res 65A: 126–135, 2003</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>12734804</pmid><doi>10.1002/jbm.a.10373</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research, 2003-05, Vol.65A (2), p.126-135
issn 1549-3296
0021-9304
1552-4965
1097-4636
language eng
recordid cdi_proquest_miscellaneous_73236325
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acrylates - chemistry
acrylic bone cement
Biocompatible Materials - chemistry
Biological and medical sciences
Bone Cements - chemistry
Chromatography, Gel
Drug Stability
hip and knee replacement
Hip Prosthesis
Humans
Knee Prosthesis
Medical sciences
Molecular Weight
molecular weight degradation
Structure-Activity Relationship
Time Factors
Viscosity
Zirconium - chemistry
title Structural degradation of acrylic bone cements due to in vivo and simulated aging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A26%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20degradation%20of%20acrylic%20bone%20cements%20due%20to%20in%20vivo%20and%20simulated%20aging&rft.jtitle=Journal%20of%20biomedical%20materials%20research&rft.au=Hughes,%20Kerry%20F.&rft.date=2003-05-01&rft.volume=65A&rft.issue=2&rft.spage=126&rft.epage=135&rft.pages=126-135&rft.issn=1549-3296&rft.eissn=1552-4965&rft.coden=JBMRBG&rft_id=info:doi/10.1002/jbm.a.10373&rft_dat=%3Cproquest_cross%3E18735672%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18735672&rft_id=info:pmid/12734804&rfr_iscdi=true