Microchip-Based Purification of DNA from Biological Samples

A microchip solid-phase extraction method for purification of DNA from biological samples, such as blood, is demonstrated. Silica beads were packed into glass microchips and the beads immobilized with sol−gel to provide a stable and reproducible solid phase onto which DNA could be adsorbed. Optimiza...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2003-04, Vol.75 (8), p.1880-1886
Hauptverfasser: Breadmore, Michael C, Wolfe, Kelley A, Arcibal, Imee G, Leung, Wayne K, Dickson, Dana, Giordano, Braden C, Power, Mary E, Ferrance, Jerome P, Feldman, Sanford H, Norris, Pamela M, Landers, James P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1886
container_issue 8
container_start_page 1880
container_title Analytical chemistry (Washington)
container_volume 75
creator Breadmore, Michael C
Wolfe, Kelley A
Arcibal, Imee G
Leung, Wayne K
Dickson, Dana
Giordano, Braden C
Power, Mary E
Ferrance, Jerome P
Feldman, Sanford H
Norris, Pamela M
Landers, James P
description A microchip solid-phase extraction method for purification of DNA from biological samples, such as blood, is demonstrated. Silica beads were packed into glass microchips and the beads immobilized with sol−gel to provide a stable and reproducible solid phase onto which DNA could be adsorbed. Optimization of the DNA loading conditions established a higher DNA recovery at pH 6.1 than 7.6. This lower pH also allowed for the flow rate to be increased, resulting in a decrease in extraction time from 25 min to less than 15 min. Using this procedure, template genomic DNA from human whole blood was purified on the microchip platform with the only sample preparation being mixing of the blood with load buffer prior to loading on the microchip device. Comparison between the microchip SPE (μchipSPE) procedure and a commercial microcentrifuge method showed comparable amounts of PCR-amplifiable DNA could be isolated from cultures of Salmonella typhimurium. The greatest potential of the μchipSPE device was illustrated by purifying DNA from spores from the vaccine strain of Bacillus anthracis, where eventual integration of SPE, PCR, and separation on a single microdevice could potentially enable complete detection of the infectious agent in less than 30 min.
doi_str_mv 10.1021/ac0204855
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73236208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18828582</sourcerecordid><originalsourceid>FETCH-LOGICAL-a542t-82635ba441fa2be55257b9adebab6ee49fe902695408ee3c52a35eaf9f0162803</originalsourceid><addsrcrecordid>eNqFkF1rFDEUhoNY7Np64R-QQVDwYuzJSTLJ4FU_bCvUWtgq3oUzs4mmzmzWZAf035uySxf0wqtz8T68vOdh7DmHtxyQH1EPCNIo9YjNuEKoG2PwMZsBgKhRA-yzpznfAXAOvHnC9jlqLkA2M_buY-hT7L-HVX1C2S2qmykFH3pah7isoq_Oro8rn-JYnYQ4xG8lGao5javB5UO252nI7tn2HrDP5-9vTy_rq08XH06Pr2pSEte1wUaojqTknrBzSqHSXUsL11HXOCdb71rAplUSjHOiV0hCOfKtL2PRgDhgrze9qxR_Ti6v7Rhy74aBli5O2WqBokEw_wV50WKUwQK-_Au8i1Nalicscm2UNq0o0JsNVATlnJy3qxRGSr8tB3vv3T54L-yLbeHUjW6xI7eiC_BqC1AuCn2iZR_yjpNaYiPvl9UbLuS1-_WQU_phGy20src3c3vxRVzPz-GrPdv1Up93T_w78A-sZqHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217857893</pqid></control><display><type>article</type><title>Microchip-Based Purification of DNA from Biological Samples</title><source>MEDLINE</source><source>ACS Publications</source><creator>Breadmore, Michael C ; Wolfe, Kelley A ; Arcibal, Imee G ; Leung, Wayne K ; Dickson, Dana ; Giordano, Braden C ; Power, Mary E ; Ferrance, Jerome P ; Feldman, Sanford H ; Norris, Pamela M ; Landers, James P</creator><creatorcontrib>Breadmore, Michael C ; Wolfe, Kelley A ; Arcibal, Imee G ; Leung, Wayne K ; Dickson, Dana ; Giordano, Braden C ; Power, Mary E ; Ferrance, Jerome P ; Feldman, Sanford H ; Norris, Pamela M ; Landers, James P</creatorcontrib><description>A microchip solid-phase extraction method for purification of DNA from biological samples, such as blood, is demonstrated. Silica beads were packed into glass microchips and the beads immobilized with sol−gel to provide a stable and reproducible solid phase onto which DNA could be adsorbed. Optimization of the DNA loading conditions established a higher DNA recovery at pH 6.1 than 7.6. This lower pH also allowed for the flow rate to be increased, resulting in a decrease in extraction time from 25 min to less than 15 min. Using this procedure, template genomic DNA from human whole blood was purified on the microchip platform with the only sample preparation being mixing of the blood with load buffer prior to loading on the microchip device. Comparison between the microchip SPE (μchipSPE) procedure and a commercial microcentrifuge method showed comparable amounts of PCR-amplifiable DNA could be isolated from cultures of Salmonella typhimurium. The greatest potential of the μchipSPE device was illustrated by purifying DNA from spores from the vaccine strain of Bacillus anthracis, where eventual integration of SPE, PCR, and separation on a single microdevice could potentially enable complete detection of the infectious agent in less than 30 min.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac0204855</identifier><identifier>PMID: 12713046</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adsorption ; Analytical, structural and metabolic biochemistry ; Biological and medical sciences ; Biology ; Blood ; Deoxyribonucleic acid ; DNA ; DNA - isolation &amp; purification ; DNA, Bacterial - isolation &amp; purification ; Dna, deoxyribonucleoproteins ; Fundamental and applied biological sciences. Psychology ; Humans ; Microchemistry - instrumentation ; Microspheres ; Nucleic acids ; Silicon Dioxide ; Tissues</subject><ispartof>Analytical chemistry (Washington), 2003-04, Vol.75 (8), p.1880-1886</ispartof><rights>Copyright © 2003 American Chemical Society</rights><rights>2003 INIST-CNRS</rights><rights>Copyright American Chemical Society Apr 15, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a542t-82635ba441fa2be55257b9adebab6ee49fe902695408ee3c52a35eaf9f0162803</citedby><cites>FETCH-LOGICAL-a542t-82635ba441fa2be55257b9adebab6ee49fe902695408ee3c52a35eaf9f0162803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac0204855$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac0204855$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14742642$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12713046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Breadmore, Michael C</creatorcontrib><creatorcontrib>Wolfe, Kelley A</creatorcontrib><creatorcontrib>Arcibal, Imee G</creatorcontrib><creatorcontrib>Leung, Wayne K</creatorcontrib><creatorcontrib>Dickson, Dana</creatorcontrib><creatorcontrib>Giordano, Braden C</creatorcontrib><creatorcontrib>Power, Mary E</creatorcontrib><creatorcontrib>Ferrance, Jerome P</creatorcontrib><creatorcontrib>Feldman, Sanford H</creatorcontrib><creatorcontrib>Norris, Pamela M</creatorcontrib><creatorcontrib>Landers, James P</creatorcontrib><title>Microchip-Based Purification of DNA from Biological Samples</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A microchip solid-phase extraction method for purification of DNA from biological samples, such as blood, is demonstrated. Silica beads were packed into glass microchips and the beads immobilized with sol−gel to provide a stable and reproducible solid phase onto which DNA could be adsorbed. Optimization of the DNA loading conditions established a higher DNA recovery at pH 6.1 than 7.6. This lower pH also allowed for the flow rate to be increased, resulting in a decrease in extraction time from 25 min to less than 15 min. Using this procedure, template genomic DNA from human whole blood was purified on the microchip platform with the only sample preparation being mixing of the blood with load buffer prior to loading on the microchip device. Comparison between the microchip SPE (μchipSPE) procedure and a commercial microcentrifuge method showed comparable amounts of PCR-amplifiable DNA could be isolated from cultures of Salmonella typhimurium. The greatest potential of the μchipSPE device was illustrated by purifying DNA from spores from the vaccine strain of Bacillus anthracis, where eventual integration of SPE, PCR, and separation on a single microdevice could potentially enable complete detection of the infectious agent in less than 30 min.</description><subject>Adsorption</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Biological and medical sciences</subject><subject>Biology</subject><subject>Blood</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - isolation &amp; purification</subject><subject>DNA, Bacterial - isolation &amp; purification</subject><subject>Dna, deoxyribonucleoproteins</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Microchemistry - instrumentation</subject><subject>Microspheres</subject><subject>Nucleic acids</subject><subject>Silicon Dioxide</subject><subject>Tissues</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkF1rFDEUhoNY7Np64R-QQVDwYuzJSTLJ4FU_bCvUWtgq3oUzs4mmzmzWZAf035uySxf0wqtz8T68vOdh7DmHtxyQH1EPCNIo9YjNuEKoG2PwMZsBgKhRA-yzpznfAXAOvHnC9jlqLkA2M_buY-hT7L-HVX1C2S2qmykFH3pah7isoq_Oro8rn-JYnYQ4xG8lGao5javB5UO252nI7tn2HrDP5-9vTy_rq08XH06Pr2pSEte1wUaojqTknrBzSqHSXUsL11HXOCdb71rAplUSjHOiV0hCOfKtL2PRgDhgrze9qxR_Ti6v7Rhy74aBli5O2WqBokEw_wV50WKUwQK-_Au8i1Nalicscm2UNq0o0JsNVATlnJy3qxRGSr8tB3vv3T54L-yLbeHUjW6xI7eiC_BqC1AuCn2iZR_yjpNaYiPvl9UbLuS1-_WQU_phGy20src3c3vxRVzPz-GrPdv1Up93T_w78A-sZqHg</recordid><startdate>20030415</startdate><enddate>20030415</enddate><creator>Breadmore, Michael C</creator><creator>Wolfe, Kelley A</creator><creator>Arcibal, Imee G</creator><creator>Leung, Wayne K</creator><creator>Dickson, Dana</creator><creator>Giordano, Braden C</creator><creator>Power, Mary E</creator><creator>Ferrance, Jerome P</creator><creator>Feldman, Sanford H</creator><creator>Norris, Pamela M</creator><creator>Landers, James P</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20030415</creationdate><title>Microchip-Based Purification of DNA from Biological Samples</title><author>Breadmore, Michael C ; Wolfe, Kelley A ; Arcibal, Imee G ; Leung, Wayne K ; Dickson, Dana ; Giordano, Braden C ; Power, Mary E ; Ferrance, Jerome P ; Feldman, Sanford H ; Norris, Pamela M ; Landers, James P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a542t-82635ba441fa2be55257b9adebab6ee49fe902695408ee3c52a35eaf9f0162803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adsorption</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Biological and medical sciences</topic><topic>Biology</topic><topic>Blood</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - isolation &amp; purification</topic><topic>DNA, Bacterial - isolation &amp; purification</topic><topic>Dna, deoxyribonucleoproteins</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Microchemistry - instrumentation</topic><topic>Microspheres</topic><topic>Nucleic acids</topic><topic>Silicon Dioxide</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breadmore, Michael C</creatorcontrib><creatorcontrib>Wolfe, Kelley A</creatorcontrib><creatorcontrib>Arcibal, Imee G</creatorcontrib><creatorcontrib>Leung, Wayne K</creatorcontrib><creatorcontrib>Dickson, Dana</creatorcontrib><creatorcontrib>Giordano, Braden C</creatorcontrib><creatorcontrib>Power, Mary E</creatorcontrib><creatorcontrib>Ferrance, Jerome P</creatorcontrib><creatorcontrib>Feldman, Sanford H</creatorcontrib><creatorcontrib>Norris, Pamela M</creatorcontrib><creatorcontrib>Landers, James P</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breadmore, Michael C</au><au>Wolfe, Kelley A</au><au>Arcibal, Imee G</au><au>Leung, Wayne K</au><au>Dickson, Dana</au><au>Giordano, Braden C</au><au>Power, Mary E</au><au>Ferrance, Jerome P</au><au>Feldman, Sanford H</au><au>Norris, Pamela M</au><au>Landers, James P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microchip-Based Purification of DNA from Biological Samples</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2003-04-15</date><risdate>2003</risdate><volume>75</volume><issue>8</issue><spage>1880</spage><epage>1886</epage><pages>1880-1886</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A microchip solid-phase extraction method for purification of DNA from biological samples, such as blood, is demonstrated. Silica beads were packed into glass microchips and the beads immobilized with sol−gel to provide a stable and reproducible solid phase onto which DNA could be adsorbed. Optimization of the DNA loading conditions established a higher DNA recovery at pH 6.1 than 7.6. This lower pH also allowed for the flow rate to be increased, resulting in a decrease in extraction time from 25 min to less than 15 min. Using this procedure, template genomic DNA from human whole blood was purified on the microchip platform with the only sample preparation being mixing of the blood with load buffer prior to loading on the microchip device. Comparison between the microchip SPE (μchipSPE) procedure and a commercial microcentrifuge method showed comparable amounts of PCR-amplifiable DNA could be isolated from cultures of Salmonella typhimurium. The greatest potential of the μchipSPE device was illustrated by purifying DNA from spores from the vaccine strain of Bacillus anthracis, where eventual integration of SPE, PCR, and separation on a single microdevice could potentially enable complete detection of the infectious agent in less than 30 min.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>12713046</pmid><doi>10.1021/ac0204855</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2003-04, Vol.75 (8), p.1880-1886
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_73236208
source MEDLINE; ACS Publications
subjects Adsorption
Analytical, structural and metabolic biochemistry
Biological and medical sciences
Biology
Blood
Deoxyribonucleic acid
DNA
DNA - isolation & purification
DNA, Bacterial - isolation & purification
Dna, deoxyribonucleoproteins
Fundamental and applied biological sciences. Psychology
Humans
Microchemistry - instrumentation
Microspheres
Nucleic acids
Silicon Dioxide
Tissues
title Microchip-Based Purification of DNA from Biological Samples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A00%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microchip-Based%20Purification%20of%20DNA%20from%20Biological%20Samples&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Breadmore,%20Michael%20C&rft.date=2003-04-15&rft.volume=75&rft.issue=8&rft.spage=1880&rft.epage=1886&rft.pages=1880-1886&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac0204855&rft_dat=%3Cproquest_cross%3E18828582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217857893&rft_id=info:pmid/12713046&rfr_iscdi=true