Regulation of Zinc Metabolism and Genomic Outcomes

Differential mRNA display and cDNA array analysis have identified zinc-regulated genes in small intestine, thymus and monocytes. The vast majority of the transcriptome is not influenced by dietary zinc intake, high or low. Of the genes that are zinc regulated, most are involved in signal transductio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of nutrition 2003-05, Vol.133 (5), p.1521S-1526S
Hauptverfasser: Cousins, Robert J., Blanchard, Raymond K., Moore, J. Bernadette, Cui, Li, Green, Calvert L., Liuzzi, Juan P., Cao, Jay, Bobo, Jeffrey A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1526S
container_issue 5
container_start_page 1521S
container_title The Journal of nutrition
container_volume 133
creator Cousins, Robert J.
Blanchard, Raymond K.
Moore, J. Bernadette
Cui, Li
Green, Calvert L.
Liuzzi, Juan P.
Cao, Jay
Bobo, Jeffrey A.
description Differential mRNA display and cDNA array analysis have identified zinc-regulated genes in small intestine, thymus and monocytes. The vast majority of the transcriptome is not influenced by dietary zinc intake, high or low. Of the genes that are zinc regulated, most are involved in signal transduction (particularly influencing the immune response), responses to stress and redox, growth and energy utilization. Among the genes identified are uroguanylin (UG), cholecystokinin, lymphocyte-specific protein tyrosine kinase (LCK), T-cell cytokine receptor, heat shock proteins and the DNA damage repair and recombination protein-23B. Zinc transporters (ZnT) help regulate the supply of this micronutrient to maintain cellular functions. Expression of ZnT-1 and -2 is regulated by dietary zinc in many organs including small intestine and kidney. ZnT-4 is ubiquitously expressed but is refractory to zinc intake. Expression of ZnT-1, -2 and -4 changes markedly during gestation and lactation from highly abundant to undetectable. Each ZnT has an endosomal-like appearance in the tissues examined. Upregulation of ZnT-1 and ZnT-2 by dietary zinc strongly implicates these transporters in zinc acquisition and/or storage for subsequent systemic needs. THP-1 cells were used as a model to examine the response of human cells to changes in zinc status. Based on mRNA quantities, Zip1 and ZnT-5 were the most highly expressed. Zinc depletion of these cells decreased expression of all transporters except Zip2, where expression increased markedly. Collectively, these findings provide a genomic footprint upon which to address the biological and clinical significance of zinc and new avenues for status assessment.
doi_str_mv 10.1093/jn/133.5.1521S
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73233367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022316622159006</els_id><sourcerecordid>73233367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-c94625811d848748dcde84c82b06c9a588d6a7320530f3ea48bbbb27cb7a5e3a3</originalsourceid><addsrcrecordid>eNp10c9rFTEQB_Agin1Wrx51EfS2r5n83mMpWoVKwdqLl5DNzpY8dpOa7Ar-96bug4LgXObymWH4DiGvge6BdvzsEM-A873cg2Rw84TsQApoFVD6lOwoZazloNQJeVHKgVIKojPPyQkwzamQekfYN7xbJ7eEFJs0Nj9C9M1XXFyfplDmxsWhucSY5uCb63Xxacbykjwb3VTw1bGfkttPH79ffG6vri-_XJxftV4oWFrfCcWkARiMMFqYwQ9ohDesp8p3ThozKKc5o5LTkaMTpq_FtO-1k8gdPyUftr33Of1csSx2DsXjNLmIaS22znLOla7w3T_wkNYc620WOi24kZRXtN-Qz6mUjKO9z2F2-bcFah-itIdoa5RW2r9R1oE3x61rP-PwyI_ZVfD-CFzxbhqziz6URye0Mh3I6t5ubnTJurtcze0Nq694eIfYhNkE1jh_Bcy2-IDR4xAy-sUOKfzvyj80-5W4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197438503</pqid></control><display><type>article</type><title>Regulation of Zinc Metabolism and Genomic Outcomes</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Cousins, Robert J. ; Blanchard, Raymond K. ; Moore, J. Bernadette ; Cui, Li ; Green, Calvert L. ; Liuzzi, Juan P. ; Cao, Jay ; Bobo, Jeffrey A.</creator><creatorcontrib>Cousins, Robert J. ; Blanchard, Raymond K. ; Moore, J. Bernadette ; Cui, Li ; Green, Calvert L. ; Liuzzi, Juan P. ; Cao, Jay ; Bobo, Jeffrey A.</creatorcontrib><description>Differential mRNA display and cDNA array analysis have identified zinc-regulated genes in small intestine, thymus and monocytes. The vast majority of the transcriptome is not influenced by dietary zinc intake, high or low. Of the genes that are zinc regulated, most are involved in signal transduction (particularly influencing the immune response), responses to stress and redox, growth and energy utilization. Among the genes identified are uroguanylin (UG), cholecystokinin, lymphocyte-specific protein tyrosine kinase (LCK), T-cell cytokine receptor, heat shock proteins and the DNA damage repair and recombination protein-23B. Zinc transporters (ZnT) help regulate the supply of this micronutrient to maintain cellular functions. Expression of ZnT-1 and -2 is regulated by dietary zinc in many organs including small intestine and kidney. ZnT-4 is ubiquitously expressed but is refractory to zinc intake. Expression of ZnT-1, -2 and -4 changes markedly during gestation and lactation from highly abundant to undetectable. Each ZnT has an endosomal-like appearance in the tissues examined. Upregulation of ZnT-1 and ZnT-2 by dietary zinc strongly implicates these transporters in zinc acquisition and/or storage for subsequent systemic needs. THP-1 cells were used as a model to examine the response of human cells to changes in zinc status. Based on mRNA quantities, Zip1 and ZnT-5 were the most highly expressed. Zinc depletion of these cells decreased expression of all transporters except Zip2, where expression increased markedly. Collectively, these findings provide a genomic footprint upon which to address the biological and clinical significance of zinc and new avenues for status assessment.</description><identifier>ISSN: 0022-3166</identifier><identifier>EISSN: 1541-6100</identifier><identifier>DOI: 10.1093/jn/133.5.1521S</identifier><identifier>PMID: 12730457</identifier><identifier>CODEN: JONUAI</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>Animals ; Biological and medical sciences ; cholecystokinin ; complementary DNA ; Deficiency Diseases - genetics ; Diet ; DNA repair ; energy ; Fundamental and applied biological sciences. Psychology ; gene regulation ; genes ; Genomics ; Genotype ; heat shock proteins ; Homeostasis ; Humans ; immune response ; Intestinal Absorption ; kidneys ; lactation ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck) - genetics ; messenger RNA ; Metabolism ; monocytes ; pregnancy ; Rats ; RNA, Messenger - genetics ; signal transduction ; small intestine ; stress response ; transcriptome ; transporters ; tyrosine ; Zinc ; Zinc - deficiency ; Zinc - metabolism</subject><ispartof>The Journal of nutrition, 2003-05, Vol.133 (5), p.1521S-1526S</ispartof><rights>2003 American Society for Nutrition.</rights><rights>2003 INIST-CNRS</rights><rights>Copyright American Institute of Nutrition May 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-c94625811d848748dcde84c82b06c9a588d6a7320530f3ea48bbbb27cb7a5e3a3</citedby><cites>FETCH-LOGICAL-c461t-c94625811d848748dcde84c82b06c9a588d6a7320530f3ea48bbbb27cb7a5e3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14768915$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12730457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cousins, Robert J.</creatorcontrib><creatorcontrib>Blanchard, Raymond K.</creatorcontrib><creatorcontrib>Moore, J. Bernadette</creatorcontrib><creatorcontrib>Cui, Li</creatorcontrib><creatorcontrib>Green, Calvert L.</creatorcontrib><creatorcontrib>Liuzzi, Juan P.</creatorcontrib><creatorcontrib>Cao, Jay</creatorcontrib><creatorcontrib>Bobo, Jeffrey A.</creatorcontrib><title>Regulation of Zinc Metabolism and Genomic Outcomes</title><title>The Journal of nutrition</title><addtitle>J Nutr</addtitle><description>Differential mRNA display and cDNA array analysis have identified zinc-regulated genes in small intestine, thymus and monocytes. The vast majority of the transcriptome is not influenced by dietary zinc intake, high or low. Of the genes that are zinc regulated, most are involved in signal transduction (particularly influencing the immune response), responses to stress and redox, growth and energy utilization. Among the genes identified are uroguanylin (UG), cholecystokinin, lymphocyte-specific protein tyrosine kinase (LCK), T-cell cytokine receptor, heat shock proteins and the DNA damage repair and recombination protein-23B. Zinc transporters (ZnT) help regulate the supply of this micronutrient to maintain cellular functions. Expression of ZnT-1 and -2 is regulated by dietary zinc in many organs including small intestine and kidney. ZnT-4 is ubiquitously expressed but is refractory to zinc intake. Expression of ZnT-1, -2 and -4 changes markedly during gestation and lactation from highly abundant to undetectable. Each ZnT has an endosomal-like appearance in the tissues examined. Upregulation of ZnT-1 and ZnT-2 by dietary zinc strongly implicates these transporters in zinc acquisition and/or storage for subsequent systemic needs. THP-1 cells were used as a model to examine the response of human cells to changes in zinc status. Based on mRNA quantities, Zip1 and ZnT-5 were the most highly expressed. Zinc depletion of these cells decreased expression of all transporters except Zip2, where expression increased markedly. Collectively, these findings provide a genomic footprint upon which to address the biological and clinical significance of zinc and new avenues for status assessment.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>cholecystokinin</subject><subject>complementary DNA</subject><subject>Deficiency Diseases - genetics</subject><subject>Diet</subject><subject>DNA repair</subject><subject>energy</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gene regulation</subject><subject>genes</subject><subject>Genomics</subject><subject>Genotype</subject><subject>heat shock proteins</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>immune response</subject><subject>Intestinal Absorption</subject><subject>kidneys</subject><subject>lactation</subject><subject>Lymphocyte Specific Protein Tyrosine Kinase p56(lck) - genetics</subject><subject>messenger RNA</subject><subject>Metabolism</subject><subject>monocytes</subject><subject>pregnancy</subject><subject>Rats</subject><subject>RNA, Messenger - genetics</subject><subject>signal transduction</subject><subject>small intestine</subject><subject>stress response</subject><subject>transcriptome</subject><subject>transporters</subject><subject>tyrosine</subject><subject>Zinc</subject><subject>Zinc - deficiency</subject><subject>Zinc - metabolism</subject><issn>0022-3166</issn><issn>1541-6100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10c9rFTEQB_Agin1Wrx51EfS2r5n83mMpWoVKwdqLl5DNzpY8dpOa7Ar-96bug4LgXObymWH4DiGvge6BdvzsEM-A873cg2Rw84TsQApoFVD6lOwoZazloNQJeVHKgVIKojPPyQkwzamQekfYN7xbJ7eEFJs0Nj9C9M1XXFyfplDmxsWhucSY5uCb63Xxacbykjwb3VTw1bGfkttPH79ffG6vri-_XJxftV4oWFrfCcWkARiMMFqYwQ9ohDesp8p3ThozKKc5o5LTkaMTpq_FtO-1k8gdPyUftr33Of1csSx2DsXjNLmIaS22znLOla7w3T_wkNYc620WOi24kZRXtN-Qz6mUjKO9z2F2-bcFah-itIdoa5RW2r9R1oE3x61rP-PwyI_ZVfD-CFzxbhqziz6URye0Mh3I6t5ubnTJurtcze0Nq694eIfYhNkE1jh_Bcy2-IDR4xAy-sUOKfzvyj80-5W4</recordid><startdate>20030501</startdate><enddate>20030501</enddate><creator>Cousins, Robert J.</creator><creator>Blanchard, Raymond K.</creator><creator>Moore, J. Bernadette</creator><creator>Cui, Li</creator><creator>Green, Calvert L.</creator><creator>Liuzzi, Juan P.</creator><creator>Cao, Jay</creator><creator>Bobo, Jeffrey A.</creator><general>Elsevier Inc</general><general>American Institute of Nutrition</general><general>American Society for Nutritional Sciences</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20030501</creationdate><title>Regulation of Zinc Metabolism and Genomic Outcomes</title><author>Cousins, Robert J. ; Blanchard, Raymond K. ; Moore, J. Bernadette ; Cui, Li ; Green, Calvert L. ; Liuzzi, Juan P. ; Cao, Jay ; Bobo, Jeffrey A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-c94625811d848748dcde84c82b06c9a588d6a7320530f3ea48bbbb27cb7a5e3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>cholecystokinin</topic><topic>complementary DNA</topic><topic>Deficiency Diseases - genetics</topic><topic>Diet</topic><topic>DNA repair</topic><topic>energy</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gene regulation</topic><topic>genes</topic><topic>Genomics</topic><topic>Genotype</topic><topic>heat shock proteins</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>immune response</topic><topic>Intestinal Absorption</topic><topic>kidneys</topic><topic>lactation</topic><topic>Lymphocyte Specific Protein Tyrosine Kinase p56(lck) - genetics</topic><topic>messenger RNA</topic><topic>Metabolism</topic><topic>monocytes</topic><topic>pregnancy</topic><topic>Rats</topic><topic>RNA, Messenger - genetics</topic><topic>signal transduction</topic><topic>small intestine</topic><topic>stress response</topic><topic>transcriptome</topic><topic>transporters</topic><topic>tyrosine</topic><topic>Zinc</topic><topic>Zinc - deficiency</topic><topic>Zinc - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cousins, Robert J.</creatorcontrib><creatorcontrib>Blanchard, Raymond K.</creatorcontrib><creatorcontrib>Moore, J. Bernadette</creatorcontrib><creatorcontrib>Cui, Li</creatorcontrib><creatorcontrib>Green, Calvert L.</creatorcontrib><creatorcontrib>Liuzzi, Juan P.</creatorcontrib><creatorcontrib>Cao, Jay</creatorcontrib><creatorcontrib>Bobo, Jeffrey A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cousins, Robert J.</au><au>Blanchard, Raymond K.</au><au>Moore, J. Bernadette</au><au>Cui, Li</au><au>Green, Calvert L.</au><au>Liuzzi, Juan P.</au><au>Cao, Jay</au><au>Bobo, Jeffrey A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of Zinc Metabolism and Genomic Outcomes</atitle><jtitle>The Journal of nutrition</jtitle><addtitle>J Nutr</addtitle><date>2003-05-01</date><risdate>2003</risdate><volume>133</volume><issue>5</issue><spage>1521S</spage><epage>1526S</epage><pages>1521S-1526S</pages><issn>0022-3166</issn><eissn>1541-6100</eissn><coden>JONUAI</coden><abstract>Differential mRNA display and cDNA array analysis have identified zinc-regulated genes in small intestine, thymus and monocytes. The vast majority of the transcriptome is not influenced by dietary zinc intake, high or low. Of the genes that are zinc regulated, most are involved in signal transduction (particularly influencing the immune response), responses to stress and redox, growth and energy utilization. Among the genes identified are uroguanylin (UG), cholecystokinin, lymphocyte-specific protein tyrosine kinase (LCK), T-cell cytokine receptor, heat shock proteins and the DNA damage repair and recombination protein-23B. Zinc transporters (ZnT) help regulate the supply of this micronutrient to maintain cellular functions. Expression of ZnT-1 and -2 is regulated by dietary zinc in many organs including small intestine and kidney. ZnT-4 is ubiquitously expressed but is refractory to zinc intake. Expression of ZnT-1, -2 and -4 changes markedly during gestation and lactation from highly abundant to undetectable. Each ZnT has an endosomal-like appearance in the tissues examined. Upregulation of ZnT-1 and ZnT-2 by dietary zinc strongly implicates these transporters in zinc acquisition and/or storage for subsequent systemic needs. THP-1 cells were used as a model to examine the response of human cells to changes in zinc status. Based on mRNA quantities, Zip1 and ZnT-5 were the most highly expressed. Zinc depletion of these cells decreased expression of all transporters except Zip2, where expression increased markedly. Collectively, these findings provide a genomic footprint upon which to address the biological and clinical significance of zinc and new avenues for status assessment.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>12730457</pmid><doi>10.1093/jn/133.5.1521S</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3166
ispartof The Journal of nutrition, 2003-05, Vol.133 (5), p.1521S-1526S
issn 0022-3166
1541-6100
language eng
recordid cdi_proquest_miscellaneous_73233367
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Animals
Biological and medical sciences
cholecystokinin
complementary DNA
Deficiency Diseases - genetics
Diet
DNA repair
energy
Fundamental and applied biological sciences. Psychology
gene regulation
genes
Genomics
Genotype
heat shock proteins
Homeostasis
Humans
immune response
Intestinal Absorption
kidneys
lactation
Lymphocyte Specific Protein Tyrosine Kinase p56(lck) - genetics
messenger RNA
Metabolism
monocytes
pregnancy
Rats
RNA, Messenger - genetics
signal transduction
small intestine
stress response
transcriptome
transporters
tyrosine
Zinc
Zinc - deficiency
Zinc - metabolism
title Regulation of Zinc Metabolism and Genomic Outcomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20Zinc%20Metabolism%20and%20Genomic%20Outcomes&rft.jtitle=The%20Journal%20of%20nutrition&rft.au=Cousins,%20Robert%20J.&rft.date=2003-05-01&rft.volume=133&rft.issue=5&rft.spage=1521S&rft.epage=1526S&rft.pages=1521S-1526S&rft.issn=0022-3166&rft.eissn=1541-6100&rft.coden=JONUAI&rft_id=info:doi/10.1093/jn/133.5.1521S&rft_dat=%3Cproquest_cross%3E73233367%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197438503&rft_id=info:pmid/12730457&rft_els_id=S0022316622159006&rfr_iscdi=true