Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria
Although functional coupling between protein kinase Cepsilon (PKCepsilon) and mitochondria has been implicated in the genesis of cardioprotection, the signal transduction mechanisms that enable this link and the identities of the mitochondrial proteins modulated by PKCepsilon remain unknown. Based o...
Gespeichert in:
Veröffentlicht in: | Circulation research 2003-05, Vol.92 (8), p.873-880 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 880 |
---|---|
container_issue | 8 |
container_start_page | 873 |
container_title | Circulation research |
container_volume | 92 |
creator | Baines, Christopher P Song, Chang-Xu Zheng, Yu-Ting Wang, Guang-Wu Zhang, Jun Wang, Ou-Li Guo, Yiru Bolli, Roberto Cardwell, Ernest M Ping, Peipei |
description | Although functional coupling between protein kinase Cepsilon (PKCepsilon) and mitochondria has been implicated in the genesis of cardioprotection, the signal transduction mechanisms that enable this link and the identities of the mitochondrial proteins modulated by PKCepsilon remain unknown. Based on recent evidence that the mitochondrial permeability transition pore may be involved in ischemia/reperfusion injury, we hypothesized that protein-protein interactions between PKCepsilon and mitochondrial pore components may serve as a signaling mechanism to modulate pore function and thus engender cardioprotection. Coimmunoprecipitation and GST-based affinity pull-down from mouse cardiac mitochondria revealed interaction of PKCepsilon with components of the pore, namely voltage-dependent anion channel (VDAC), adenine nucleotide translocase (ANT), and hexokinase II (HKII). VDAC1, ANT1, and HKII were present in the PKCepsilon complex at approximately 2%, approximately 0.2%, and approximately 1% of their total expression, respectively. Moreover, in vitro studies demonstrated that PKCepsilon can directly bind and phosphorylate VDAC1. Incubation of isolated cardiac mitochondria with recombinant PKCepsilon resulted in a significant inhibition of Ca2+-induced mitochondrial swelling, an index of pore opening. Furthermore, cardiac-specific expression of active PKCepsilon in mice, which is cardioprotective, greatly increased interaction of PKCepsilon with the pore components and inhibited Ca2+-induced pore opening. In contrast, cardiac expression of kinase-inactive PKCepsilon did not affect pore opening. Finally, administration of the pore opener atractyloside significantly attenuated the infarct-sparing effect of PKCepsilon transgenesis. Collectively, these data demonstrate that PKCepsilon forms physical interactions with components of the cardiac mitochondrial pore. This in turn inhibits the pathological function of the pore and contributes to PKCepsilon-induced cardioprotection. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_73226506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73226506</sourcerecordid><originalsourceid>FETCH-LOGICAL-p810-f4334ea8333732e3d6fede7a3a0ba6e8aff75ad4c5fb10609fae9d10c9659ae73</originalsourceid><addsrcrecordid>eNpd0E1LxDAQBuAgiruu_gUJHrwV8tV0c5TFL1jQw97LtJmyWdukJimy_96K68XTwMszL8OckSUvhSpUWfFzsmSMmaKSki3IVUoHxriSwlySBRdaS2XYkvTvMWR0nn44DwnpBsfk-uCp8xkjtDnRL5f3FLydo71r3JzkPdIR44DQuN7lI80RfHLZzXtjiDhL2kK0Dlo6uBzaffA2OrgmFx30CW9Oc0V2T4-7zUuxfXt-3Txsi3HNWdEpKRXCWkpZSYHS6g4tViCBNaBxDV1XlWBVW3YNZ5qZDtBYzlqjSwNYyRW5_60dY_icMOV6cKnFvgePYUr13Cp0yfQM7_7BQ5iin0-rBRdKCG5-0O0JTc2Ath6jGyAe678fym9A5HCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212422196</pqid></control><display><type>article</type><title>Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Journals@Ovid Complete</source><creator>Baines, Christopher P ; Song, Chang-Xu ; Zheng, Yu-Ting ; Wang, Guang-Wu ; Zhang, Jun ; Wang, Ou-Li ; Guo, Yiru ; Bolli, Roberto ; Cardwell, Ernest M ; Ping, Peipei</creator><creatorcontrib>Baines, Christopher P ; Song, Chang-Xu ; Zheng, Yu-Ting ; Wang, Guang-Wu ; Zhang, Jun ; Wang, Ou-Li ; Guo, Yiru ; Bolli, Roberto ; Cardwell, Ernest M ; Ping, Peipei</creatorcontrib><description>Although functional coupling between protein kinase Cepsilon (PKCepsilon) and mitochondria has been implicated in the genesis of cardioprotection, the signal transduction mechanisms that enable this link and the identities of the mitochondrial proteins modulated by PKCepsilon remain unknown. Based on recent evidence that the mitochondrial permeability transition pore may be involved in ischemia/reperfusion injury, we hypothesized that protein-protein interactions between PKCepsilon and mitochondrial pore components may serve as a signaling mechanism to modulate pore function and thus engender cardioprotection. Coimmunoprecipitation and GST-based affinity pull-down from mouse cardiac mitochondria revealed interaction of PKCepsilon with components of the pore, namely voltage-dependent anion channel (VDAC), adenine nucleotide translocase (ANT), and hexokinase II (HKII). VDAC1, ANT1, and HKII were present in the PKCepsilon complex at approximately 2%, approximately 0.2%, and approximately 1% of their total expression, respectively. Moreover, in vitro studies demonstrated that PKCepsilon can directly bind and phosphorylate VDAC1. Incubation of isolated cardiac mitochondria with recombinant PKCepsilon resulted in a significant inhibition of Ca2+-induced mitochondrial swelling, an index of pore opening. Furthermore, cardiac-specific expression of active PKCepsilon in mice, which is cardioprotective, greatly increased interaction of PKCepsilon with the pore components and inhibited Ca2+-induced pore opening. In contrast, cardiac expression of kinase-inactive PKCepsilon did not affect pore opening. Finally, administration of the pore opener atractyloside significantly attenuated the infarct-sparing effect of PKCepsilon transgenesis. Collectively, these data demonstrate that PKCepsilon forms physical interactions with components of the cardiac mitochondrial pore. This in turn inhibits the pathological function of the pore and contributes to PKCepsilon-induced cardioprotection.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>PMID: 12663490</identifier><identifier>CODEN: CIRUAL</identifier><language>eng</language><publisher>United States: Lippincott Williams & Wilkins Ovid Technologies</publisher><subject>Animals ; Atractyloside - pharmacology ; Enzyme Inhibitors - pharmacology ; Hexokinase - genetics ; Hexokinase - metabolism ; Immunoblotting ; Intracellular Membranes - physiology ; Mice ; Mice, Transgenic ; Mitochondria, Heart - drug effects ; Mitochondria, Heart - metabolism ; Mitochondrial ADP, ATP Translocases - antagonists & inhibitors ; Mitochondrial ADP, ATP Translocases - genetics ; Mitochondrial ADP, ATP Translocases - metabolism ; Myocardial Infarction - etiology ; Myocardial Infarction - metabolism ; Myocardial Infarction - pathology ; Myocardial Reperfusion Injury - complications ; Permeability ; Phosphorylation ; Porins - genetics ; Porins - metabolism ; Precipitin Tests ; Protein Binding ; Protein Kinase C - genetics ; Protein Kinase C - metabolism ; Protein Kinase C-epsilon ; Rats ; Voltage-Dependent Anion Channel 1 ; Voltage-Dependent Anion Channels</subject><ispartof>Circulation research, 2003-05, Vol.92 (8), p.873-880</ispartof><rights>Copyright American Heart Association, Inc. May 2 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12663490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baines, Christopher P</creatorcontrib><creatorcontrib>Song, Chang-Xu</creatorcontrib><creatorcontrib>Zheng, Yu-Ting</creatorcontrib><creatorcontrib>Wang, Guang-Wu</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wang, Ou-Li</creatorcontrib><creatorcontrib>Guo, Yiru</creatorcontrib><creatorcontrib>Bolli, Roberto</creatorcontrib><creatorcontrib>Cardwell, Ernest M</creatorcontrib><creatorcontrib>Ping, Peipei</creatorcontrib><title>Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>Although functional coupling between protein kinase Cepsilon (PKCepsilon) and mitochondria has been implicated in the genesis of cardioprotection, the signal transduction mechanisms that enable this link and the identities of the mitochondrial proteins modulated by PKCepsilon remain unknown. Based on recent evidence that the mitochondrial permeability transition pore may be involved in ischemia/reperfusion injury, we hypothesized that protein-protein interactions between PKCepsilon and mitochondrial pore components may serve as a signaling mechanism to modulate pore function and thus engender cardioprotection. Coimmunoprecipitation and GST-based affinity pull-down from mouse cardiac mitochondria revealed interaction of PKCepsilon with components of the pore, namely voltage-dependent anion channel (VDAC), adenine nucleotide translocase (ANT), and hexokinase II (HKII). VDAC1, ANT1, and HKII were present in the PKCepsilon complex at approximately 2%, approximately 0.2%, and approximately 1% of their total expression, respectively. Moreover, in vitro studies demonstrated that PKCepsilon can directly bind and phosphorylate VDAC1. Incubation of isolated cardiac mitochondria with recombinant PKCepsilon resulted in a significant inhibition of Ca2+-induced mitochondrial swelling, an index of pore opening. Furthermore, cardiac-specific expression of active PKCepsilon in mice, which is cardioprotective, greatly increased interaction of PKCepsilon with the pore components and inhibited Ca2+-induced pore opening. In contrast, cardiac expression of kinase-inactive PKCepsilon did not affect pore opening. Finally, administration of the pore opener atractyloside significantly attenuated the infarct-sparing effect of PKCepsilon transgenesis. Collectively, these data demonstrate that PKCepsilon forms physical interactions with components of the cardiac mitochondrial pore. This in turn inhibits the pathological function of the pore and contributes to PKCepsilon-induced cardioprotection.</description><subject>Animals</subject><subject>Atractyloside - pharmacology</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Hexokinase - genetics</subject><subject>Hexokinase - metabolism</subject><subject>Immunoblotting</subject><subject>Intracellular Membranes - physiology</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Mitochondria, Heart - drug effects</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Mitochondrial ADP, ATP Translocases - antagonists & inhibitors</subject><subject>Mitochondrial ADP, ATP Translocases - genetics</subject><subject>Mitochondrial ADP, ATP Translocases - metabolism</subject><subject>Myocardial Infarction - etiology</subject><subject>Myocardial Infarction - metabolism</subject><subject>Myocardial Infarction - pathology</subject><subject>Myocardial Reperfusion Injury - complications</subject><subject>Permeability</subject><subject>Phosphorylation</subject><subject>Porins - genetics</subject><subject>Porins - metabolism</subject><subject>Precipitin Tests</subject><subject>Protein Binding</subject><subject>Protein Kinase C - genetics</subject><subject>Protein Kinase C - metabolism</subject><subject>Protein Kinase C-epsilon</subject><subject>Rats</subject><subject>Voltage-Dependent Anion Channel 1</subject><subject>Voltage-Dependent Anion Channels</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0E1LxDAQBuAgiruu_gUJHrwV8tV0c5TFL1jQw97LtJmyWdukJimy_96K68XTwMszL8OckSUvhSpUWfFzsmSMmaKSki3IVUoHxriSwlySBRdaS2XYkvTvMWR0nn44DwnpBsfk-uCp8xkjtDnRL5f3FLydo71r3JzkPdIR44DQuN7lI80RfHLZzXtjiDhL2kK0Dlo6uBzaffA2OrgmFx30CW9Oc0V2T4-7zUuxfXt-3Txsi3HNWdEpKRXCWkpZSYHS6g4tViCBNaBxDV1XlWBVW3YNZ5qZDtBYzlqjSwNYyRW5_60dY_icMOV6cKnFvgePYUr13Cp0yfQM7_7BQ5iin0-rBRdKCG5-0O0JTc2Ath6jGyAe678fym9A5HCQ</recordid><startdate>20030502</startdate><enddate>20030502</enddate><creator>Baines, Christopher P</creator><creator>Song, Chang-Xu</creator><creator>Zheng, Yu-Ting</creator><creator>Wang, Guang-Wu</creator><creator>Zhang, Jun</creator><creator>Wang, Ou-Li</creator><creator>Guo, Yiru</creator><creator>Bolli, Roberto</creator><creator>Cardwell, Ernest M</creator><creator>Ping, Peipei</creator><general>Lippincott Williams & Wilkins Ovid Technologies</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20030502</creationdate><title>Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria</title><author>Baines, Christopher P ; Song, Chang-Xu ; Zheng, Yu-Ting ; Wang, Guang-Wu ; Zhang, Jun ; Wang, Ou-Li ; Guo, Yiru ; Bolli, Roberto ; Cardwell, Ernest M ; Ping, Peipei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p810-f4334ea8333732e3d6fede7a3a0ba6e8aff75ad4c5fb10609fae9d10c9659ae73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Atractyloside - pharmacology</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Hexokinase - genetics</topic><topic>Hexokinase - metabolism</topic><topic>Immunoblotting</topic><topic>Intracellular Membranes - physiology</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Mitochondria, Heart - drug effects</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Mitochondrial ADP, ATP Translocases - antagonists & inhibitors</topic><topic>Mitochondrial ADP, ATP Translocases - genetics</topic><topic>Mitochondrial ADP, ATP Translocases - metabolism</topic><topic>Myocardial Infarction - etiology</topic><topic>Myocardial Infarction - metabolism</topic><topic>Myocardial Infarction - pathology</topic><topic>Myocardial Reperfusion Injury - complications</topic><topic>Permeability</topic><topic>Phosphorylation</topic><topic>Porins - genetics</topic><topic>Porins - metabolism</topic><topic>Precipitin Tests</topic><topic>Protein Binding</topic><topic>Protein Kinase C - genetics</topic><topic>Protein Kinase C - metabolism</topic><topic>Protein Kinase C-epsilon</topic><topic>Rats</topic><topic>Voltage-Dependent Anion Channel 1</topic><topic>Voltage-Dependent Anion Channels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baines, Christopher P</creatorcontrib><creatorcontrib>Song, Chang-Xu</creatorcontrib><creatorcontrib>Zheng, Yu-Ting</creatorcontrib><creatorcontrib>Wang, Guang-Wu</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wang, Ou-Li</creatorcontrib><creatorcontrib>Guo, Yiru</creatorcontrib><creatorcontrib>Bolli, Roberto</creatorcontrib><creatorcontrib>Cardwell, Ernest M</creatorcontrib><creatorcontrib>Ping, Peipei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baines, Christopher P</au><au>Song, Chang-Xu</au><au>Zheng, Yu-Ting</au><au>Wang, Guang-Wu</au><au>Zhang, Jun</au><au>Wang, Ou-Li</au><au>Guo, Yiru</au><au>Bolli, Roberto</au><au>Cardwell, Ernest M</au><au>Ping, Peipei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2003-05-02</date><risdate>2003</risdate><volume>92</volume><issue>8</issue><spage>873</spage><epage>880</epage><pages>873-880</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><coden>CIRUAL</coden><abstract>Although functional coupling between protein kinase Cepsilon (PKCepsilon) and mitochondria has been implicated in the genesis of cardioprotection, the signal transduction mechanisms that enable this link and the identities of the mitochondrial proteins modulated by PKCepsilon remain unknown. Based on recent evidence that the mitochondrial permeability transition pore may be involved in ischemia/reperfusion injury, we hypothesized that protein-protein interactions between PKCepsilon and mitochondrial pore components may serve as a signaling mechanism to modulate pore function and thus engender cardioprotection. Coimmunoprecipitation and GST-based affinity pull-down from mouse cardiac mitochondria revealed interaction of PKCepsilon with components of the pore, namely voltage-dependent anion channel (VDAC), adenine nucleotide translocase (ANT), and hexokinase II (HKII). VDAC1, ANT1, and HKII were present in the PKCepsilon complex at approximately 2%, approximately 0.2%, and approximately 1% of their total expression, respectively. Moreover, in vitro studies demonstrated that PKCepsilon can directly bind and phosphorylate VDAC1. Incubation of isolated cardiac mitochondria with recombinant PKCepsilon resulted in a significant inhibition of Ca2+-induced mitochondrial swelling, an index of pore opening. Furthermore, cardiac-specific expression of active PKCepsilon in mice, which is cardioprotective, greatly increased interaction of PKCepsilon with the pore components and inhibited Ca2+-induced pore opening. In contrast, cardiac expression of kinase-inactive PKCepsilon did not affect pore opening. Finally, administration of the pore opener atractyloside significantly attenuated the infarct-sparing effect of PKCepsilon transgenesis. Collectively, these data demonstrate that PKCepsilon forms physical interactions with components of the cardiac mitochondrial pore. This in turn inhibits the pathological function of the pore and contributes to PKCepsilon-induced cardioprotection.</abstract><cop>United States</cop><pub>Lippincott Williams & Wilkins Ovid Technologies</pub><pmid>12663490</pmid><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-7330 |
ispartof | Circulation research, 2003-05, Vol.92 (8), p.873-880 |
issn | 0009-7330 1524-4571 |
language | eng |
recordid | cdi_proquest_miscellaneous_73226506 |
source | MEDLINE; American Heart Association Journals; EZB-FREE-00999 freely available EZB journals; Journals@Ovid Complete |
subjects | Animals Atractyloside - pharmacology Enzyme Inhibitors - pharmacology Hexokinase - genetics Hexokinase - metabolism Immunoblotting Intracellular Membranes - physiology Mice Mice, Transgenic Mitochondria, Heart - drug effects Mitochondria, Heart - metabolism Mitochondrial ADP, ATP Translocases - antagonists & inhibitors Mitochondrial ADP, ATP Translocases - genetics Mitochondrial ADP, ATP Translocases - metabolism Myocardial Infarction - etiology Myocardial Infarction - metabolism Myocardial Infarction - pathology Myocardial Reperfusion Injury - complications Permeability Phosphorylation Porins - genetics Porins - metabolism Precipitin Tests Protein Binding Protein Kinase C - genetics Protein Kinase C - metabolism Protein Kinase C-epsilon Rats Voltage-Dependent Anion Channel 1 Voltage-Dependent Anion Channels |
title | Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20kinase%20Cepsilon%20interacts%20with%20and%20inhibits%20the%20permeability%20transition%20pore%20in%20cardiac%20mitochondria&rft.jtitle=Circulation%20research&rft.au=Baines,%20Christopher%20P&rft.date=2003-05-02&rft.volume=92&rft.issue=8&rft.spage=873&rft.epage=880&rft.pages=873-880&rft.issn=0009-7330&rft.eissn=1524-4571&rft.coden=CIRUAL&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E73226506%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212422196&rft_id=info:pmid/12663490&rfr_iscdi=true |