Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria

Although functional coupling between protein kinase Cepsilon (PKCepsilon) and mitochondria has been implicated in the genesis of cardioprotection, the signal transduction mechanisms that enable this link and the identities of the mitochondrial proteins modulated by PKCepsilon remain unknown. Based o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation research 2003-05, Vol.92 (8), p.873-880
Hauptverfasser: Baines, Christopher P, Song, Chang-Xu, Zheng, Yu-Ting, Wang, Guang-Wu, Zhang, Jun, Wang, Ou-Li, Guo, Yiru, Bolli, Roberto, Cardwell, Ernest M, Ping, Peipei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 880
container_issue 8
container_start_page 873
container_title Circulation research
container_volume 92
creator Baines, Christopher P
Song, Chang-Xu
Zheng, Yu-Ting
Wang, Guang-Wu
Zhang, Jun
Wang, Ou-Li
Guo, Yiru
Bolli, Roberto
Cardwell, Ernest M
Ping, Peipei
description Although functional coupling between protein kinase Cepsilon (PKCepsilon) and mitochondria has been implicated in the genesis of cardioprotection, the signal transduction mechanisms that enable this link and the identities of the mitochondrial proteins modulated by PKCepsilon remain unknown. Based on recent evidence that the mitochondrial permeability transition pore may be involved in ischemia/reperfusion injury, we hypothesized that protein-protein interactions between PKCepsilon and mitochondrial pore components may serve as a signaling mechanism to modulate pore function and thus engender cardioprotection. Coimmunoprecipitation and GST-based affinity pull-down from mouse cardiac mitochondria revealed interaction of PKCepsilon with components of the pore, namely voltage-dependent anion channel (VDAC), adenine nucleotide translocase (ANT), and hexokinase II (HKII). VDAC1, ANT1, and HKII were present in the PKCepsilon complex at approximately 2%, approximately 0.2%, and approximately 1% of their total expression, respectively. Moreover, in vitro studies demonstrated that PKCepsilon can directly bind and phosphorylate VDAC1. Incubation of isolated cardiac mitochondria with recombinant PKCepsilon resulted in a significant inhibition of Ca2+-induced mitochondrial swelling, an index of pore opening. Furthermore, cardiac-specific expression of active PKCepsilon in mice, which is cardioprotective, greatly increased interaction of PKCepsilon with the pore components and inhibited Ca2+-induced pore opening. In contrast, cardiac expression of kinase-inactive PKCepsilon did not affect pore opening. Finally, administration of the pore opener atractyloside significantly attenuated the infarct-sparing effect of PKCepsilon transgenesis. Collectively, these data demonstrate that PKCepsilon forms physical interactions with components of the cardiac mitochondrial pore. This in turn inhibits the pathological function of the pore and contributes to PKCepsilon-induced cardioprotection.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_73226506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73226506</sourcerecordid><originalsourceid>FETCH-LOGICAL-p810-f4334ea8333732e3d6fede7a3a0ba6e8aff75ad4c5fb10609fae9d10c9659ae73</originalsourceid><addsrcrecordid>eNpd0E1LxDAQBuAgiruu_gUJHrwV8tV0c5TFL1jQw97LtJmyWdukJimy_96K68XTwMszL8OckSUvhSpUWfFzsmSMmaKSki3IVUoHxriSwlySBRdaS2XYkvTvMWR0nn44DwnpBsfk-uCp8xkjtDnRL5f3FLydo71r3JzkPdIR44DQuN7lI80RfHLZzXtjiDhL2kK0Dlo6uBzaffA2OrgmFx30CW9Oc0V2T4-7zUuxfXt-3Txsi3HNWdEpKRXCWkpZSYHS6g4tViCBNaBxDV1XlWBVW3YNZ5qZDtBYzlqjSwNYyRW5_60dY_icMOV6cKnFvgePYUr13Cp0yfQM7_7BQ5iin0-rBRdKCG5-0O0JTc2Ath6jGyAe678fym9A5HCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212422196</pqid></control><display><type>article</type><title>Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Journals@Ovid Complete</source><creator>Baines, Christopher P ; Song, Chang-Xu ; Zheng, Yu-Ting ; Wang, Guang-Wu ; Zhang, Jun ; Wang, Ou-Li ; Guo, Yiru ; Bolli, Roberto ; Cardwell, Ernest M ; Ping, Peipei</creator><creatorcontrib>Baines, Christopher P ; Song, Chang-Xu ; Zheng, Yu-Ting ; Wang, Guang-Wu ; Zhang, Jun ; Wang, Ou-Li ; Guo, Yiru ; Bolli, Roberto ; Cardwell, Ernest M ; Ping, Peipei</creatorcontrib><description>Although functional coupling between protein kinase Cepsilon (PKCepsilon) and mitochondria has been implicated in the genesis of cardioprotection, the signal transduction mechanisms that enable this link and the identities of the mitochondrial proteins modulated by PKCepsilon remain unknown. Based on recent evidence that the mitochondrial permeability transition pore may be involved in ischemia/reperfusion injury, we hypothesized that protein-protein interactions between PKCepsilon and mitochondrial pore components may serve as a signaling mechanism to modulate pore function and thus engender cardioprotection. Coimmunoprecipitation and GST-based affinity pull-down from mouse cardiac mitochondria revealed interaction of PKCepsilon with components of the pore, namely voltage-dependent anion channel (VDAC), adenine nucleotide translocase (ANT), and hexokinase II (HKII). VDAC1, ANT1, and HKII were present in the PKCepsilon complex at approximately 2%, approximately 0.2%, and approximately 1% of their total expression, respectively. Moreover, in vitro studies demonstrated that PKCepsilon can directly bind and phosphorylate VDAC1. Incubation of isolated cardiac mitochondria with recombinant PKCepsilon resulted in a significant inhibition of Ca2+-induced mitochondrial swelling, an index of pore opening. Furthermore, cardiac-specific expression of active PKCepsilon in mice, which is cardioprotective, greatly increased interaction of PKCepsilon with the pore components and inhibited Ca2+-induced pore opening. In contrast, cardiac expression of kinase-inactive PKCepsilon did not affect pore opening. Finally, administration of the pore opener atractyloside significantly attenuated the infarct-sparing effect of PKCepsilon transgenesis. Collectively, these data demonstrate that PKCepsilon forms physical interactions with components of the cardiac mitochondrial pore. This in turn inhibits the pathological function of the pore and contributes to PKCepsilon-induced cardioprotection.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>PMID: 12663490</identifier><identifier>CODEN: CIRUAL</identifier><language>eng</language><publisher>United States: Lippincott Williams &amp; Wilkins Ovid Technologies</publisher><subject>Animals ; Atractyloside - pharmacology ; Enzyme Inhibitors - pharmacology ; Hexokinase - genetics ; Hexokinase - metabolism ; Immunoblotting ; Intracellular Membranes - physiology ; Mice ; Mice, Transgenic ; Mitochondria, Heart - drug effects ; Mitochondria, Heart - metabolism ; Mitochondrial ADP, ATP Translocases - antagonists &amp; inhibitors ; Mitochondrial ADP, ATP Translocases - genetics ; Mitochondrial ADP, ATP Translocases - metabolism ; Myocardial Infarction - etiology ; Myocardial Infarction - metabolism ; Myocardial Infarction - pathology ; Myocardial Reperfusion Injury - complications ; Permeability ; Phosphorylation ; Porins - genetics ; Porins - metabolism ; Precipitin Tests ; Protein Binding ; Protein Kinase C - genetics ; Protein Kinase C - metabolism ; Protein Kinase C-epsilon ; Rats ; Voltage-Dependent Anion Channel 1 ; Voltage-Dependent Anion Channels</subject><ispartof>Circulation research, 2003-05, Vol.92 (8), p.873-880</ispartof><rights>Copyright American Heart Association, Inc. May 2 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12663490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baines, Christopher P</creatorcontrib><creatorcontrib>Song, Chang-Xu</creatorcontrib><creatorcontrib>Zheng, Yu-Ting</creatorcontrib><creatorcontrib>Wang, Guang-Wu</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wang, Ou-Li</creatorcontrib><creatorcontrib>Guo, Yiru</creatorcontrib><creatorcontrib>Bolli, Roberto</creatorcontrib><creatorcontrib>Cardwell, Ernest M</creatorcontrib><creatorcontrib>Ping, Peipei</creatorcontrib><title>Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>Although functional coupling between protein kinase Cepsilon (PKCepsilon) and mitochondria has been implicated in the genesis of cardioprotection, the signal transduction mechanisms that enable this link and the identities of the mitochondrial proteins modulated by PKCepsilon remain unknown. Based on recent evidence that the mitochondrial permeability transition pore may be involved in ischemia/reperfusion injury, we hypothesized that protein-protein interactions between PKCepsilon and mitochondrial pore components may serve as a signaling mechanism to modulate pore function and thus engender cardioprotection. Coimmunoprecipitation and GST-based affinity pull-down from mouse cardiac mitochondria revealed interaction of PKCepsilon with components of the pore, namely voltage-dependent anion channel (VDAC), adenine nucleotide translocase (ANT), and hexokinase II (HKII). VDAC1, ANT1, and HKII were present in the PKCepsilon complex at approximately 2%, approximately 0.2%, and approximately 1% of their total expression, respectively. Moreover, in vitro studies demonstrated that PKCepsilon can directly bind and phosphorylate VDAC1. Incubation of isolated cardiac mitochondria with recombinant PKCepsilon resulted in a significant inhibition of Ca2+-induced mitochondrial swelling, an index of pore opening. Furthermore, cardiac-specific expression of active PKCepsilon in mice, which is cardioprotective, greatly increased interaction of PKCepsilon with the pore components and inhibited Ca2+-induced pore opening. In contrast, cardiac expression of kinase-inactive PKCepsilon did not affect pore opening. Finally, administration of the pore opener atractyloside significantly attenuated the infarct-sparing effect of PKCepsilon transgenesis. Collectively, these data demonstrate that PKCepsilon forms physical interactions with components of the cardiac mitochondrial pore. This in turn inhibits the pathological function of the pore and contributes to PKCepsilon-induced cardioprotection.</description><subject>Animals</subject><subject>Atractyloside - pharmacology</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Hexokinase - genetics</subject><subject>Hexokinase - metabolism</subject><subject>Immunoblotting</subject><subject>Intracellular Membranes - physiology</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Mitochondria, Heart - drug effects</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Mitochondrial ADP, ATP Translocases - antagonists &amp; inhibitors</subject><subject>Mitochondrial ADP, ATP Translocases - genetics</subject><subject>Mitochondrial ADP, ATP Translocases - metabolism</subject><subject>Myocardial Infarction - etiology</subject><subject>Myocardial Infarction - metabolism</subject><subject>Myocardial Infarction - pathology</subject><subject>Myocardial Reperfusion Injury - complications</subject><subject>Permeability</subject><subject>Phosphorylation</subject><subject>Porins - genetics</subject><subject>Porins - metabolism</subject><subject>Precipitin Tests</subject><subject>Protein Binding</subject><subject>Protein Kinase C - genetics</subject><subject>Protein Kinase C - metabolism</subject><subject>Protein Kinase C-epsilon</subject><subject>Rats</subject><subject>Voltage-Dependent Anion Channel 1</subject><subject>Voltage-Dependent Anion Channels</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0E1LxDAQBuAgiruu_gUJHrwV8tV0c5TFL1jQw97LtJmyWdukJimy_96K68XTwMszL8OckSUvhSpUWfFzsmSMmaKSki3IVUoHxriSwlySBRdaS2XYkvTvMWR0nn44DwnpBsfk-uCp8xkjtDnRL5f3FLydo71r3JzkPdIR44DQuN7lI80RfHLZzXtjiDhL2kK0Dlo6uBzaffA2OrgmFx30CW9Oc0V2T4-7zUuxfXt-3Txsi3HNWdEpKRXCWkpZSYHS6g4tViCBNaBxDV1XlWBVW3YNZ5qZDtBYzlqjSwNYyRW5_60dY_icMOV6cKnFvgePYUr13Cp0yfQM7_7BQ5iin0-rBRdKCG5-0O0JTc2Ath6jGyAe678fym9A5HCQ</recordid><startdate>20030502</startdate><enddate>20030502</enddate><creator>Baines, Christopher P</creator><creator>Song, Chang-Xu</creator><creator>Zheng, Yu-Ting</creator><creator>Wang, Guang-Wu</creator><creator>Zhang, Jun</creator><creator>Wang, Ou-Li</creator><creator>Guo, Yiru</creator><creator>Bolli, Roberto</creator><creator>Cardwell, Ernest M</creator><creator>Ping, Peipei</creator><general>Lippincott Williams &amp; Wilkins Ovid Technologies</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20030502</creationdate><title>Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria</title><author>Baines, Christopher P ; Song, Chang-Xu ; Zheng, Yu-Ting ; Wang, Guang-Wu ; Zhang, Jun ; Wang, Ou-Li ; Guo, Yiru ; Bolli, Roberto ; Cardwell, Ernest M ; Ping, Peipei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p810-f4334ea8333732e3d6fede7a3a0ba6e8aff75ad4c5fb10609fae9d10c9659ae73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Atractyloside - pharmacology</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Hexokinase - genetics</topic><topic>Hexokinase - metabolism</topic><topic>Immunoblotting</topic><topic>Intracellular Membranes - physiology</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Mitochondria, Heart - drug effects</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Mitochondrial ADP, ATP Translocases - antagonists &amp; inhibitors</topic><topic>Mitochondrial ADP, ATP Translocases - genetics</topic><topic>Mitochondrial ADP, ATP Translocases - metabolism</topic><topic>Myocardial Infarction - etiology</topic><topic>Myocardial Infarction - metabolism</topic><topic>Myocardial Infarction - pathology</topic><topic>Myocardial Reperfusion Injury - complications</topic><topic>Permeability</topic><topic>Phosphorylation</topic><topic>Porins - genetics</topic><topic>Porins - metabolism</topic><topic>Precipitin Tests</topic><topic>Protein Binding</topic><topic>Protein Kinase C - genetics</topic><topic>Protein Kinase C - metabolism</topic><topic>Protein Kinase C-epsilon</topic><topic>Rats</topic><topic>Voltage-Dependent Anion Channel 1</topic><topic>Voltage-Dependent Anion Channels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baines, Christopher P</creatorcontrib><creatorcontrib>Song, Chang-Xu</creatorcontrib><creatorcontrib>Zheng, Yu-Ting</creatorcontrib><creatorcontrib>Wang, Guang-Wu</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wang, Ou-Li</creatorcontrib><creatorcontrib>Guo, Yiru</creatorcontrib><creatorcontrib>Bolli, Roberto</creatorcontrib><creatorcontrib>Cardwell, Ernest M</creatorcontrib><creatorcontrib>Ping, Peipei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baines, Christopher P</au><au>Song, Chang-Xu</au><au>Zheng, Yu-Ting</au><au>Wang, Guang-Wu</au><au>Zhang, Jun</au><au>Wang, Ou-Li</au><au>Guo, Yiru</au><au>Bolli, Roberto</au><au>Cardwell, Ernest M</au><au>Ping, Peipei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2003-05-02</date><risdate>2003</risdate><volume>92</volume><issue>8</issue><spage>873</spage><epage>880</epage><pages>873-880</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><coden>CIRUAL</coden><abstract>Although functional coupling between protein kinase Cepsilon (PKCepsilon) and mitochondria has been implicated in the genesis of cardioprotection, the signal transduction mechanisms that enable this link and the identities of the mitochondrial proteins modulated by PKCepsilon remain unknown. Based on recent evidence that the mitochondrial permeability transition pore may be involved in ischemia/reperfusion injury, we hypothesized that protein-protein interactions between PKCepsilon and mitochondrial pore components may serve as a signaling mechanism to modulate pore function and thus engender cardioprotection. Coimmunoprecipitation and GST-based affinity pull-down from mouse cardiac mitochondria revealed interaction of PKCepsilon with components of the pore, namely voltage-dependent anion channel (VDAC), adenine nucleotide translocase (ANT), and hexokinase II (HKII). VDAC1, ANT1, and HKII were present in the PKCepsilon complex at approximately 2%, approximately 0.2%, and approximately 1% of their total expression, respectively. Moreover, in vitro studies demonstrated that PKCepsilon can directly bind and phosphorylate VDAC1. Incubation of isolated cardiac mitochondria with recombinant PKCepsilon resulted in a significant inhibition of Ca2+-induced mitochondrial swelling, an index of pore opening. Furthermore, cardiac-specific expression of active PKCepsilon in mice, which is cardioprotective, greatly increased interaction of PKCepsilon with the pore components and inhibited Ca2+-induced pore opening. In contrast, cardiac expression of kinase-inactive PKCepsilon did not affect pore opening. Finally, administration of the pore opener atractyloside significantly attenuated the infarct-sparing effect of PKCepsilon transgenesis. Collectively, these data demonstrate that PKCepsilon forms physical interactions with components of the cardiac mitochondrial pore. This in turn inhibits the pathological function of the pore and contributes to PKCepsilon-induced cardioprotection.</abstract><cop>United States</cop><pub>Lippincott Williams &amp; Wilkins Ovid Technologies</pub><pmid>12663490</pmid><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-7330
ispartof Circulation research, 2003-05, Vol.92 (8), p.873-880
issn 0009-7330
1524-4571
language eng
recordid cdi_proquest_miscellaneous_73226506
source MEDLINE; American Heart Association Journals; EZB-FREE-00999 freely available EZB journals; Journals@Ovid Complete
subjects Animals
Atractyloside - pharmacology
Enzyme Inhibitors - pharmacology
Hexokinase - genetics
Hexokinase - metabolism
Immunoblotting
Intracellular Membranes - physiology
Mice
Mice, Transgenic
Mitochondria, Heart - drug effects
Mitochondria, Heart - metabolism
Mitochondrial ADP, ATP Translocases - antagonists & inhibitors
Mitochondrial ADP, ATP Translocases - genetics
Mitochondrial ADP, ATP Translocases - metabolism
Myocardial Infarction - etiology
Myocardial Infarction - metabolism
Myocardial Infarction - pathology
Myocardial Reperfusion Injury - complications
Permeability
Phosphorylation
Porins - genetics
Porins - metabolism
Precipitin Tests
Protein Binding
Protein Kinase C - genetics
Protein Kinase C - metabolism
Protein Kinase C-epsilon
Rats
Voltage-Dependent Anion Channel 1
Voltage-Dependent Anion Channels
title Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20kinase%20Cepsilon%20interacts%20with%20and%20inhibits%20the%20permeability%20transition%20pore%20in%20cardiac%20mitochondria&rft.jtitle=Circulation%20research&rft.au=Baines,%20Christopher%20P&rft.date=2003-05-02&rft.volume=92&rft.issue=8&rft.spage=873&rft.epage=880&rft.pages=873-880&rft.issn=0009-7330&rft.eissn=1524-4571&rft.coden=CIRUAL&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E73226506%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212422196&rft_id=info:pmid/12663490&rfr_iscdi=true