Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3 -8-driven mitochondrial amplification loop
Caspase-8 is a key effector of death-receptor-triggered apoptosis. In a previous study, we demonstrated, however, that caspase-8 can also be activated in a death receptor-independent manner via the mitochondrial apoptosis pathway, downstream of caspase-3. Here, we show that caspases-3 and -8 mediate...
Gespeichert in:
Veröffentlicht in: | Oncogene 2003-04, Vol.22 (15), p.2236-2247 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2247 |
---|---|
container_issue | 15 |
container_start_page | 2236 |
container_title | Oncogene |
container_volume | 22 |
creator | von Haefen, Clarissa Wieder, Thomas Essmann, Frank Schulze-Osthoff, Klaus Dörken, Bernd Daniel, Peter T |
description | Caspase-8 is a key effector of death-receptor-triggered apoptosis. In a previous study, we demonstrated, however, that caspase-8 can also be activated in a death receptor-independent manner via the mitochondrial apoptosis pathway, downstream of caspase-3. Here, we show that caspases-3 and -8 mediate a mitochondrial amplification loop that is required for the optimal release of cytochrome
c
, mitochondrial permeability shift transition, and cell death during apoptosis induced by treatment with the microtubule-damaging agent paclitaxel (Taxol). In contrast, Smac release from mitochondria followed a different pattern, and therefore seems to be regulated independently from cytochrome
c
release. Taxol-induced cell death was inhibited by the use of synthetic, cell-permeable caspase-3- (zDEVD-fmk) or caspase-8-specific (zIETD-fmk) inhibitors. Apoptosis signaling was not affected by a dominant-negative FADD mutant (FADD-DN), thereby excluding a role of death receptor signaling in the amplification loop and drug-induced apoptosis. The inhibitor experiments were corroborated by the use of BJAB cells overexpressing the natural serpin protease inhibitor, cytokine response modifier A. These data demonstrate that the complete activation of mitochondria, release of cytochrome
c
, and execution of drug-induced apoptosis require a mitochondrial amplification loop that depends on caspases-3 and -8 activation. In addition, this is the first report to demonstrate death receptor-independent caspase-8 autoprocessing
in vivo
. |
doi_str_mv | 10.1038/sj.onc.1206280 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_73214502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A189218828</galeid><sourcerecordid>A189218828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c576t-de2c660d779ab08b048ba0f2f95ec8037d9d341804c66437178235b420e1d1123</originalsourceid><addsrcrecordid>eNqFkstu1DAUhiMEotPClh3IAsGKTH1JYmc5rbiqEixgbZ2xT1qPEju1kwqeoS-NhxlpKtQKWbJln-8_F-sviheMLhkV6jRtlsGbJeO04Yo-Khaskk1Z1231uFjQtqZlywU_Ko5T2lBKZUv50-KIcUlp09BFcfsdTO8m-IV96bydDVoCYxinkFwizpOzr6szYrDvExljMIg2kRsHBIhFmK5IRIOZjls1jpg3P70nBtIICVMpSKlKG90NejK4KZir4PMVegLD2LvOGZhc8KQPYXxWPOmgT_h8f54UPz9--HH-ubz49unL-eqiNLVsptIiN7l3K2ULa6rWtFJroB3v2hqNokLa1oqKKVplrBKSScVFva44RWYZ4-KkeLfLmwe6njFNenBpOyJ4DHPSUnBW1fT_IFOyZo1gGXzzD7gJc_R5CM2bigmuGqEy9fpBikshaqbupLqEHrXzXZgimG1dvWKq5Uwpvk21vIfKy-LgTPDYufx-n8DEkFLETo_RDRB_a0b11kk6bXR2kt47KQte7Zud1wPaA763Tgbe7gFIBvougjcuHbhKspr9_ZvTHZdyyF9iPEz9YOmXO4WHaY54p_Qu_gcswOhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>227335181</pqid></control><display><type>article</type><title>Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3 -8-driven mitochondrial amplification loop</title><source>MEDLINE</source><source>Nature</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>von Haefen, Clarissa ; Wieder, Thomas ; Essmann, Frank ; Schulze-Osthoff, Klaus ; Dörken, Bernd ; Daniel, Peter T</creator><creatorcontrib>von Haefen, Clarissa ; Wieder, Thomas ; Essmann, Frank ; Schulze-Osthoff, Klaus ; Dörken, Bernd ; Daniel, Peter T</creatorcontrib><description>Caspase-8 is a key effector of death-receptor-triggered apoptosis. In a previous study, we demonstrated, however, that caspase-8 can also be activated in a death receptor-independent manner via the mitochondrial apoptosis pathway, downstream of caspase-3. Here, we show that caspases-3 and -8 mediate a mitochondrial amplification loop that is required for the optimal release of cytochrome
c
, mitochondrial permeability shift transition, and cell death during apoptosis induced by treatment with the microtubule-damaging agent paclitaxel (Taxol). In contrast, Smac release from mitochondria followed a different pattern, and therefore seems to be regulated independently from cytochrome
c
release. Taxol-induced cell death was inhibited by the use of synthetic, cell-permeable caspase-3- (zDEVD-fmk) or caspase-8-specific (zIETD-fmk) inhibitors. Apoptosis signaling was not affected by a dominant-negative FADD mutant (FADD-DN), thereby excluding a role of death receptor signaling in the amplification loop and drug-induced apoptosis. The inhibitor experiments were corroborated by the use of BJAB cells overexpressing the natural serpin protease inhibitor, cytokine response modifier A. These data demonstrate that the complete activation of mitochondria, release of cytochrome
c
, and execution of drug-induced apoptosis require a mitochondrial amplification loop that depends on caspases-3 and -8 activation. In addition, this is the first report to demonstrate death receptor-independent caspase-8 autoprocessing
in vivo
.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/sj.onc.1206280</identifier><identifier>PMID: 12700660</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Antineoplastic Agents, Phytogenic - pharmacology ; Apoptosis ; Apoptosis - drug effects ; Apoptosis - physiology ; Arabidopsis Proteins ; B-Lymphocytes - drug effects ; B-Lymphocytes - enzymology ; B-Lymphocytes - pathology ; Biological and medical sciences ; Burkitt Lymphoma - enzymology ; Burkitt Lymphoma - pathology ; Carrier Proteins - metabolism ; Caspase 3 ; Caspase 8 ; Caspase 9 ; Caspase Inhibitors ; Caspases - physiology ; Cell Biology ; Cell death ; Classical genetics, quantitative genetics, hybrids ; Cysteine Proteinase Inhibitors - pharmacology ; Cytochrome ; Cytochrome c ; Cytochrome c Group - analysis ; Cytokines ; Cytotoxicity ; DIABLO protein ; Drug resistance ; Enzyme Activation - drug effects ; FADD protein ; Fatty Acid Desaturases - chemistry ; Fatty Acid Desaturases - genetics ; Fatty Acid Desaturases - physiology ; Fundamental and applied biological sciences. Psychology ; Genetics of eukaryotes. Biological and molecular evolution ; Hematology ; Human ; Human Genetics ; Humans ; Internal Medicine ; Intracellular Membranes - drug effects ; Intracellular Membranes - metabolism ; Intracellular Signaling Peptides and Proteins ; Medicine ; Medicine & Public Health ; Microtubules - drug effects ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondrial Proteins - metabolism ; Models, Biological ; Neoplasm Proteins - antagonists & inhibitors ; Neoplasm Proteins - physiology ; Oligopeptides - pharmacology ; Oncology ; original-paper ; Paclitaxel ; Paclitaxel - pharmacology ; Permeability ; Permeability - drug effects ; Protein Structure, Tertiary ; Proteinase inhibitors ; Receptors, Tumor Necrosis Factor - physiology ; Recombinant Fusion Proteins - physiology ; Serpins - genetics ; Serpins - physiology ; Signal Transduction ; Tumor Cells, Cultured - drug effects ; Tumor Cells, Cultured - enzymology ; Tumor necrosis factor-TNF ; Viral Proteins</subject><ispartof>Oncogene, 2003-04, Vol.22 (15), p.2236-2247</ispartof><rights>Springer Nature Limited 2003</rights><rights>2003 INIST-CNRS</rights><rights>COPYRIGHT 2003 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 17, 2003</rights><rights>Nature Publishing Group 2003.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c576t-de2c660d779ab08b048ba0f2f95ec8037d9d341804c66437178235b420e1d1123</citedby><cites>FETCH-LOGICAL-c576t-de2c660d779ab08b048ba0f2f95ec8037d9d341804c66437178235b420e1d1123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14715131$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12700660$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>von Haefen, Clarissa</creatorcontrib><creatorcontrib>Wieder, Thomas</creatorcontrib><creatorcontrib>Essmann, Frank</creatorcontrib><creatorcontrib>Schulze-Osthoff, Klaus</creatorcontrib><creatorcontrib>Dörken, Bernd</creatorcontrib><creatorcontrib>Daniel, Peter T</creatorcontrib><title>Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3 -8-driven mitochondrial amplification loop</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Caspase-8 is a key effector of death-receptor-triggered apoptosis. In a previous study, we demonstrated, however, that caspase-8 can also be activated in a death receptor-independent manner via the mitochondrial apoptosis pathway, downstream of caspase-3. Here, we show that caspases-3 and -8 mediate a mitochondrial amplification loop that is required for the optimal release of cytochrome
c
, mitochondrial permeability shift transition, and cell death during apoptosis induced by treatment with the microtubule-damaging agent paclitaxel (Taxol). In contrast, Smac release from mitochondria followed a different pattern, and therefore seems to be regulated independently from cytochrome
c
release. Taxol-induced cell death was inhibited by the use of synthetic, cell-permeable caspase-3- (zDEVD-fmk) or caspase-8-specific (zIETD-fmk) inhibitors. Apoptosis signaling was not affected by a dominant-negative FADD mutant (FADD-DN), thereby excluding a role of death receptor signaling in the amplification loop and drug-induced apoptosis. The inhibitor experiments were corroborated by the use of BJAB cells overexpressing the natural serpin protease inhibitor, cytokine response modifier A. These data demonstrate that the complete activation of mitochondria, release of cytochrome
c
, and execution of drug-induced apoptosis require a mitochondrial amplification loop that depends on caspases-3 and -8 activation. In addition, this is the first report to demonstrate death receptor-independent caspase-8 autoprocessing
in vivo
.</description><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Apoptosis - physiology</subject><subject>Arabidopsis Proteins</subject><subject>B-Lymphocytes - drug effects</subject><subject>B-Lymphocytes - enzymology</subject><subject>B-Lymphocytes - pathology</subject><subject>Biological and medical sciences</subject><subject>Burkitt Lymphoma - enzymology</subject><subject>Burkitt Lymphoma - pathology</subject><subject>Carrier Proteins - metabolism</subject><subject>Caspase 3</subject><subject>Caspase 8</subject><subject>Caspase 9</subject><subject>Caspase Inhibitors</subject><subject>Caspases - physiology</subject><subject>Cell Biology</subject><subject>Cell death</subject><subject>Classical genetics, quantitative genetics, hybrids</subject><subject>Cysteine Proteinase Inhibitors - pharmacology</subject><subject>Cytochrome</subject><subject>Cytochrome c</subject><subject>Cytochrome c Group - analysis</subject><subject>Cytokines</subject><subject>Cytotoxicity</subject><subject>DIABLO protein</subject><subject>Drug resistance</subject><subject>Enzyme Activation - drug effects</subject><subject>FADD protein</subject><subject>Fatty Acid Desaturases - chemistry</subject><subject>Fatty Acid Desaturases - genetics</subject><subject>Fatty Acid Desaturases - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Hematology</subject><subject>Human</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Intracellular Membranes - drug effects</subject><subject>Intracellular Membranes - metabolism</subject><subject>Intracellular Signaling Peptides and Proteins</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Microtubules - drug effects</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Models, Biological</subject><subject>Neoplasm Proteins - antagonists & inhibitors</subject><subject>Neoplasm Proteins - physiology</subject><subject>Oligopeptides - pharmacology</subject><subject>Oncology</subject><subject>original-paper</subject><subject>Paclitaxel</subject><subject>Paclitaxel - pharmacology</subject><subject>Permeability</subject><subject>Permeability - drug effects</subject><subject>Protein Structure, Tertiary</subject><subject>Proteinase inhibitors</subject><subject>Receptors, Tumor Necrosis Factor - physiology</subject><subject>Recombinant Fusion Proteins - physiology</subject><subject>Serpins - genetics</subject><subject>Serpins - physiology</subject><subject>Signal Transduction</subject><subject>Tumor Cells, Cultured - drug effects</subject><subject>Tumor Cells, Cultured - enzymology</subject><subject>Tumor necrosis factor-TNF</subject><subject>Viral Proteins</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkstu1DAUhiMEotPClh3IAsGKTH1JYmc5rbiqEixgbZ2xT1qPEju1kwqeoS-NhxlpKtQKWbJln-8_F-sviheMLhkV6jRtlsGbJeO04Yo-Khaskk1Z1231uFjQtqZlywU_Ko5T2lBKZUv50-KIcUlp09BFcfsdTO8m-IV96bydDVoCYxinkFwizpOzr6szYrDvExljMIg2kRsHBIhFmK5IRIOZjls1jpg3P70nBtIICVMpSKlKG90NejK4KZir4PMVegLD2LvOGZhc8KQPYXxWPOmgT_h8f54UPz9--HH-ubz49unL-eqiNLVsptIiN7l3K2ULa6rWtFJroB3v2hqNokLa1oqKKVplrBKSScVFva44RWYZ4-KkeLfLmwe6njFNenBpOyJ4DHPSUnBW1fT_IFOyZo1gGXzzD7gJc_R5CM2bigmuGqEy9fpBikshaqbupLqEHrXzXZgimG1dvWKq5Uwpvk21vIfKy-LgTPDYufx-n8DEkFLETo_RDRB_a0b11kk6bXR2kt47KQte7Zud1wPaA763Tgbe7gFIBvougjcuHbhKspr9_ZvTHZdyyF9iPEz9YOmXO4WHaY54p_Qu_gcswOhw</recordid><startdate>20030417</startdate><enddate>20030417</enddate><creator>von Haefen, Clarissa</creator><creator>Wieder, Thomas</creator><creator>Essmann, Frank</creator><creator>Schulze-Osthoff, Klaus</creator><creator>Dörken, Bernd</creator><creator>Daniel, Peter T</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20030417</creationdate><title>Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3 -8-driven mitochondrial amplification loop</title><author>von Haefen, Clarissa ; Wieder, Thomas ; Essmann, Frank ; Schulze-Osthoff, Klaus ; Dörken, Bernd ; Daniel, Peter T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c576t-de2c660d779ab08b048ba0f2f95ec8037d9d341804c66437178235b420e1d1123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Apoptosis - physiology</topic><topic>Arabidopsis Proteins</topic><topic>B-Lymphocytes - drug effects</topic><topic>B-Lymphocytes - enzymology</topic><topic>B-Lymphocytes - pathology</topic><topic>Biological and medical sciences</topic><topic>Burkitt Lymphoma - enzymology</topic><topic>Burkitt Lymphoma - pathology</topic><topic>Carrier Proteins - metabolism</topic><topic>Caspase 3</topic><topic>Caspase 8</topic><topic>Caspase 9</topic><topic>Caspase Inhibitors</topic><topic>Caspases - physiology</topic><topic>Cell Biology</topic><topic>Cell death</topic><topic>Classical genetics, quantitative genetics, hybrids</topic><topic>Cysteine Proteinase Inhibitors - pharmacology</topic><topic>Cytochrome</topic><topic>Cytochrome c</topic><topic>Cytochrome c Group - analysis</topic><topic>Cytokines</topic><topic>Cytotoxicity</topic><topic>DIABLO protein</topic><topic>Drug resistance</topic><topic>Enzyme Activation - drug effects</topic><topic>FADD protein</topic><topic>Fatty Acid Desaturases - chemistry</topic><topic>Fatty Acid Desaturases - genetics</topic><topic>Fatty Acid Desaturases - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Hematology</topic><topic>Human</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Intracellular Membranes - drug effects</topic><topic>Intracellular Membranes - metabolism</topic><topic>Intracellular Signaling Peptides and Proteins</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Microtubules - drug effects</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Models, Biological</topic><topic>Neoplasm Proteins - antagonists & inhibitors</topic><topic>Neoplasm Proteins - physiology</topic><topic>Oligopeptides - pharmacology</topic><topic>Oncology</topic><topic>original-paper</topic><topic>Paclitaxel</topic><topic>Paclitaxel - pharmacology</topic><topic>Permeability</topic><topic>Permeability - drug effects</topic><topic>Protein Structure, Tertiary</topic><topic>Proteinase inhibitors</topic><topic>Receptors, Tumor Necrosis Factor - physiology</topic><topic>Recombinant Fusion Proteins - physiology</topic><topic>Serpins - genetics</topic><topic>Serpins - physiology</topic><topic>Signal Transduction</topic><topic>Tumor Cells, Cultured - drug effects</topic><topic>Tumor Cells, Cultured - enzymology</topic><topic>Tumor necrosis factor-TNF</topic><topic>Viral Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>von Haefen, Clarissa</creatorcontrib><creatorcontrib>Wieder, Thomas</creatorcontrib><creatorcontrib>Essmann, Frank</creatorcontrib><creatorcontrib>Schulze-Osthoff, Klaus</creatorcontrib><creatorcontrib>Dörken, Bernd</creatorcontrib><creatorcontrib>Daniel, Peter T</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>von Haefen, Clarissa</au><au>Wieder, Thomas</au><au>Essmann, Frank</au><au>Schulze-Osthoff, Klaus</au><au>Dörken, Bernd</au><au>Daniel, Peter T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3 -8-driven mitochondrial amplification loop</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2003-04-17</date><risdate>2003</risdate><volume>22</volume><issue>15</issue><spage>2236</spage><epage>2247</epage><pages>2236-2247</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>Caspase-8 is a key effector of death-receptor-triggered apoptosis. In a previous study, we demonstrated, however, that caspase-8 can also be activated in a death receptor-independent manner via the mitochondrial apoptosis pathway, downstream of caspase-3. Here, we show that caspases-3 and -8 mediate a mitochondrial amplification loop that is required for the optimal release of cytochrome
c
, mitochondrial permeability shift transition, and cell death during apoptosis induced by treatment with the microtubule-damaging agent paclitaxel (Taxol). In contrast, Smac release from mitochondria followed a different pattern, and therefore seems to be regulated independently from cytochrome
c
release. Taxol-induced cell death was inhibited by the use of synthetic, cell-permeable caspase-3- (zDEVD-fmk) or caspase-8-specific (zIETD-fmk) inhibitors. Apoptosis signaling was not affected by a dominant-negative FADD mutant (FADD-DN), thereby excluding a role of death receptor signaling in the amplification loop and drug-induced apoptosis. The inhibitor experiments were corroborated by the use of BJAB cells overexpressing the natural serpin protease inhibitor, cytokine response modifier A. These data demonstrate that the complete activation of mitochondria, release of cytochrome
c
, and execution of drug-induced apoptosis require a mitochondrial amplification loop that depends on caspases-3 and -8 activation. In addition, this is the first report to demonstrate death receptor-independent caspase-8 autoprocessing
in vivo
.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>12700660</pmid><doi>10.1038/sj.onc.1206280</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2003-04, Vol.22 (15), p.2236-2247 |
issn | 0950-9232 1476-5594 |
language | eng |
recordid | cdi_proquest_miscellaneous_73214502 |
source | MEDLINE; Nature; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Antineoplastic Agents, Phytogenic - pharmacology Apoptosis Apoptosis - drug effects Apoptosis - physiology Arabidopsis Proteins B-Lymphocytes - drug effects B-Lymphocytes - enzymology B-Lymphocytes - pathology Biological and medical sciences Burkitt Lymphoma - enzymology Burkitt Lymphoma - pathology Carrier Proteins - metabolism Caspase 3 Caspase 8 Caspase 9 Caspase Inhibitors Caspases - physiology Cell Biology Cell death Classical genetics, quantitative genetics, hybrids Cysteine Proteinase Inhibitors - pharmacology Cytochrome Cytochrome c Cytochrome c Group - analysis Cytokines Cytotoxicity DIABLO protein Drug resistance Enzyme Activation - drug effects FADD protein Fatty Acid Desaturases - chemistry Fatty Acid Desaturases - genetics Fatty Acid Desaturases - physiology Fundamental and applied biological sciences. Psychology Genetics of eukaryotes. Biological and molecular evolution Hematology Human Human Genetics Humans Internal Medicine Intracellular Membranes - drug effects Intracellular Membranes - metabolism Intracellular Signaling Peptides and Proteins Medicine Medicine & Public Health Microtubules - drug effects Mitochondria Mitochondria - drug effects Mitochondria - metabolism Mitochondrial Proteins - metabolism Models, Biological Neoplasm Proteins - antagonists & inhibitors Neoplasm Proteins - physiology Oligopeptides - pharmacology Oncology original-paper Paclitaxel Paclitaxel - pharmacology Permeability Permeability - drug effects Protein Structure, Tertiary Proteinase inhibitors Receptors, Tumor Necrosis Factor - physiology Recombinant Fusion Proteins - physiology Serpins - genetics Serpins - physiology Signal Transduction Tumor Cells, Cultured - drug effects Tumor Cells, Cultured - enzymology Tumor necrosis factor-TNF Viral Proteins |
title | Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3 -8-driven mitochondrial amplification loop |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A18%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Paclitaxel-induced%20apoptosis%20in%20BJAB%20cells%20proceeds%20via%20a%20death%20receptor-independent,%20caspases-3%20-8-driven%20mitochondrial%20amplification%20loop&rft.jtitle=Oncogene&rft.au=von%20Haefen,%20Clarissa&rft.date=2003-04-17&rft.volume=22&rft.issue=15&rft.spage=2236&rft.epage=2247&rft.pages=2236-2247&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/sj.onc.1206280&rft_dat=%3Cgale_proqu%3EA189218828%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=227335181&rft_id=info:pmid/12700660&rft_galeid=A189218828&rfr_iscdi=true |