Absolute Refractive Index Determination by Microinterferometric Backscatter Detection

Microinterferometric backscatter detection (MIBD) has previously been shown capable of measuring changes in the refractive index of liquids on the order of 10-7. The MIBD technique is based on interference of laser light after it is reflected from different regions in a capillary. These reflections...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2003-04, Vol.75 (8), p.1946-1953
Hauptverfasser: Sørensen, Henrik Schiøtt, Pranov, Henrik, Larsen, Niels B, Bornhop, Darryl J, Andersen, Peter E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1953
container_issue 8
container_start_page 1946
container_title Analytical chemistry (Washington)
container_volume 75
creator Sørensen, Henrik Schiøtt
Pranov, Henrik
Larsen, Niels B
Bornhop, Darryl J
Andersen, Peter E
description Microinterferometric backscatter detection (MIBD) has previously been shown capable of measuring changes in the refractive index of liquids on the order of 10-7. The MIBD technique is based on interference of laser light after it is reflected from different regions in a capillary. These reflections generate an interference pattern that moves upon changing refractive index of the liquid in the capillary. The small-angle interference pattern traditionally considered has a repetition frequency in the refractive index space that limits the ability to measure refractive index-to-refractive index changes causing such a repetition. Such refractive index changes are typically on the order of three decades. Recent modeling and experiments with the MIBD technique have shown that other intensity variations in the pattern are present for larger backscattered angles. By considering these variations, we have shown two methods by which it is possible to extend the dynamic measurement range to make an absolute refractive index measurement. One method utilizes variations in the Fresnel coefficients while the second approach is based on the refractive index-dependent onset of total internal reflection angles. With the second approach, we have been able to measure the absolute refractive index of a liquid with a precision of 2.5 × 10-4.
doi_str_mv 10.1021/ac0206162
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73214448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>338155141</sourcerecordid><originalsourceid>FETCH-LOGICAL-a472t-cb6a890bcae567fe18dea8539588c736eab4bbfb250091ec7d08eb29794b92343</originalsourceid><addsrcrecordid>eNpl0N9PFDEQB_DGaORAH_wHzMZEEx9Wp93-2kdED0lQiRzPTdubTQr7A9uugf-ewl24BJ6aTD8zmfkS8o7CFwqMfrUeGEgq2QuyoIJBLbVmL8kCAJqaKYA9sp_SJQClQOVrskeZog0IsSAXhy5N_Zyx-otdtD6H_1idjGu8qb5jxjiE0eYwjZW7rX4FH6cwlmqHcRowx-Crb9ZfJW9zqT50-Hv9hrzqbJ_w7fY9IBfLH6ujn_Xpn-OTo8PT2nLFcu2dtLoF5y0KqTqkeo1Wi6YVWnvVSLSOO9c5JgBail6tQaNjrWq5a1nDmwPyaTP3Ok7_ZkzZDCF57Hs74jQnoxpGOee6wA9P4OU0x7HsZhhVWrZatwV93qByZkoRO3Mdw2DjraFg7oM2j0EX-347cHYDrndym2wBH7fAlnj6ku3oQ9o5rjiTghZXb1xIGW8e_228MlI1SpjV2bkRK7Y8O18y83s31_q0O-L5gneAnZ_l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217869889</pqid></control><display><type>article</type><title>Absolute Refractive Index Determination by Microinterferometric Backscatter Detection</title><source>ACS Publications</source><creator>Sørensen, Henrik Schiøtt ; Pranov, Henrik ; Larsen, Niels B ; Bornhop, Darryl J ; Andersen, Peter E</creator><creatorcontrib>Sørensen, Henrik Schiøtt ; Pranov, Henrik ; Larsen, Niels B ; Bornhop, Darryl J ; Andersen, Peter E</creatorcontrib><description>Microinterferometric backscatter detection (MIBD) has previously been shown capable of measuring changes in the refractive index of liquids on the order of 10-7. The MIBD technique is based on interference of laser light after it is reflected from different regions in a capillary. These reflections generate an interference pattern that moves upon changing refractive index of the liquid in the capillary. The small-angle interference pattern traditionally considered has a repetition frequency in the refractive index space that limits the ability to measure refractive index-to-refractive index changes causing such a repetition. Such refractive index changes are typically on the order of three decades. Recent modeling and experiments with the MIBD technique have shown that other intensity variations in the pattern are present for larger backscattered angles. By considering these variations, we have shown two methods by which it is possible to extend the dynamic measurement range to make an absolute refractive index measurement. One method utilizes variations in the Fresnel coefficients while the second approach is based on the refractive index-dependent onset of total internal reflection angles. With the second approach, we have been able to measure the absolute refractive index of a liquid with a precision of 2.5 × 10-4.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac0206162</identifier><identifier>PMID: 12713055</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Chemistry ; Exact sciences and technology ; Interferon ; Spectrometric and optical methods</subject><ispartof>Analytical chemistry (Washington), 2003-04, Vol.75 (8), p.1946-1953</ispartof><rights>Copyright © 2003 American Chemical Society</rights><rights>2003 INIST-CNRS</rights><rights>Copyright American Chemical Society Apr 15, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a472t-cb6a890bcae567fe18dea8539588c736eab4bbfb250091ec7d08eb29794b92343</citedby><cites>FETCH-LOGICAL-a472t-cb6a890bcae567fe18dea8539588c736eab4bbfb250091ec7d08eb29794b92343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac0206162$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac0206162$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14742651$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12713055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sørensen, Henrik Schiøtt</creatorcontrib><creatorcontrib>Pranov, Henrik</creatorcontrib><creatorcontrib>Larsen, Niels B</creatorcontrib><creatorcontrib>Bornhop, Darryl J</creatorcontrib><creatorcontrib>Andersen, Peter E</creatorcontrib><title>Absolute Refractive Index Determination by Microinterferometric Backscatter Detection</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Microinterferometric backscatter detection (MIBD) has previously been shown capable of measuring changes in the refractive index of liquids on the order of 10-7. The MIBD technique is based on interference of laser light after it is reflected from different regions in a capillary. These reflections generate an interference pattern that moves upon changing refractive index of the liquid in the capillary. The small-angle interference pattern traditionally considered has a repetition frequency in the refractive index space that limits the ability to measure refractive index-to-refractive index changes causing such a repetition. Such refractive index changes are typically on the order of three decades. Recent modeling and experiments with the MIBD technique have shown that other intensity variations in the pattern are present for larger backscattered angles. By considering these variations, we have shown two methods by which it is possible to extend the dynamic measurement range to make an absolute refractive index measurement. One method utilizes variations in the Fresnel coefficients while the second approach is based on the refractive index-dependent onset of total internal reflection angles. With the second approach, we have been able to measure the absolute refractive index of a liquid with a precision of 2.5 × 10-4.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Interferon</subject><subject>Spectrometric and optical methods</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpl0N9PFDEQB_DGaORAH_wHzMZEEx9Wp93-2kdED0lQiRzPTdubTQr7A9uugf-ewl24BJ6aTD8zmfkS8o7CFwqMfrUeGEgq2QuyoIJBLbVmL8kCAJqaKYA9sp_SJQClQOVrskeZog0IsSAXhy5N_Zyx-otdtD6H_1idjGu8qb5jxjiE0eYwjZW7rX4FH6cwlmqHcRowx-Crb9ZfJW9zqT50-Hv9hrzqbJ_w7fY9IBfLH6ujn_Xpn-OTo8PT2nLFcu2dtLoF5y0KqTqkeo1Wi6YVWnvVSLSOO9c5JgBail6tQaNjrWq5a1nDmwPyaTP3Ok7_ZkzZDCF57Hs74jQnoxpGOee6wA9P4OU0x7HsZhhVWrZatwV93qByZkoRO3Mdw2DjraFg7oM2j0EX-347cHYDrndym2wBH7fAlnj6ku3oQ9o5rjiTghZXb1xIGW8e_228MlI1SpjV2bkRK7Y8O18y83s31_q0O-L5gneAnZ_l</recordid><startdate>20030415</startdate><enddate>20030415</enddate><creator>Sørensen, Henrik Schiøtt</creator><creator>Pranov, Henrik</creator><creator>Larsen, Niels B</creator><creator>Bornhop, Darryl J</creator><creator>Andersen, Peter E</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20030415</creationdate><title>Absolute Refractive Index Determination by Microinterferometric Backscatter Detection</title><author>Sørensen, Henrik Schiøtt ; Pranov, Henrik ; Larsen, Niels B ; Bornhop, Darryl J ; Andersen, Peter E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a472t-cb6a890bcae567fe18dea8539588c736eab4bbfb250091ec7d08eb29794b92343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Interferon</topic><topic>Spectrometric and optical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sørensen, Henrik Schiøtt</creatorcontrib><creatorcontrib>Pranov, Henrik</creatorcontrib><creatorcontrib>Larsen, Niels B</creatorcontrib><creatorcontrib>Bornhop, Darryl J</creatorcontrib><creatorcontrib>Andersen, Peter E</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sørensen, Henrik Schiøtt</au><au>Pranov, Henrik</au><au>Larsen, Niels B</au><au>Bornhop, Darryl J</au><au>Andersen, Peter E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Absolute Refractive Index Determination by Microinterferometric Backscatter Detection</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2003-04-15</date><risdate>2003</risdate><volume>75</volume><issue>8</issue><spage>1946</spage><epage>1953</epage><pages>1946-1953</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Microinterferometric backscatter detection (MIBD) has previously been shown capable of measuring changes in the refractive index of liquids on the order of 10-7. The MIBD technique is based on interference of laser light after it is reflected from different regions in a capillary. These reflections generate an interference pattern that moves upon changing refractive index of the liquid in the capillary. The small-angle interference pattern traditionally considered has a repetition frequency in the refractive index space that limits the ability to measure refractive index-to-refractive index changes causing such a repetition. Such refractive index changes are typically on the order of three decades. Recent modeling and experiments with the MIBD technique have shown that other intensity variations in the pattern are present for larger backscattered angles. By considering these variations, we have shown two methods by which it is possible to extend the dynamic measurement range to make an absolute refractive index measurement. One method utilizes variations in the Fresnel coefficients while the second approach is based on the refractive index-dependent onset of total internal reflection angles. With the second approach, we have been able to measure the absolute refractive index of a liquid with a precision of 2.5 × 10-4.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>12713055</pmid><doi>10.1021/ac0206162</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2003-04, Vol.75 (8), p.1946-1953
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_73214448
source ACS Publications
subjects Analytical chemistry
Chemistry
Exact sciences and technology
Interferon
Spectrometric and optical methods
title Absolute Refractive Index Determination by Microinterferometric Backscatter Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Absolute%20Refractive%20Index%20Determination%20by%20Microinterferometric%20Backscatter%20Detection&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=S%C3%B8rensen,%20Henrik%20Schi%C3%B8tt&rft.date=2003-04-15&rft.volume=75&rft.issue=8&rft.spage=1946&rft.epage=1953&rft.pages=1946-1953&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac0206162&rft_dat=%3Cproquest_cross%3E338155141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217869889&rft_id=info:pmid/12713055&rfr_iscdi=true