Regulation of cystic fibrosis transmembrane conductance regulator (CFTR) gene transcription and alternative RNA splicing in a model of developing intestinal epithelium

Transcriptional and post-transcriptional regulation of CFTR (cystic fibrosis transmembrane conductance regulator) gene expression was studied in HT29 cells. It is known that the abundance of CFTR mRNA increases during differentiation of pluripotent HT29-18 cells and is maintained at high levels in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1992-09, Vol.267 (27), p.19299-19305
Hauptverfasser: Montrose-Rafizadeh, C, Blackmon, D L, Hamosh, A, Oliva, M M, Hawkins, A L, Curristin, S M, Griffin, C A, Yang, V W, Guggino, W B, Cutting, G R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19305
container_issue 27
container_start_page 19299
container_title The Journal of biological chemistry
container_volume 267
creator Montrose-Rafizadeh, C
Blackmon, D L
Hamosh, A
Oliva, M M
Hawkins, A L
Curristin, S M
Griffin, C A
Yang, V W
Guggino, W B
Cutting, G R
description Transcriptional and post-transcriptional regulation of CFTR (cystic fibrosis transmembrane conductance regulator) gene expression was studied in HT29 cells. It is known that the abundance of CFTR mRNA increases during differentiation of pluripotent HT29-18 cells and is maintained at high levels in the stably differentiated HT29-18-C1 subclone. Nuclear run-on assays suggest that increased transcription of the CFTR gene explains the increased abundance of total CFTR mRNA in differentiated HT29 cells. The increased transcription cannot be ascribed to cell cycle-dependent expression of the CFTR gene or to changes in CFTR gene copy number between subcloned cells. Similar to native tissue cells, differentiated HT29 cells contain low copy numbers of CFTR transcripts (1-5/cell), and a portion of the CFTR transcripts are alternatively spliced to remove exon 9 (and make 9-mRNA). During differentiation of HT29-18 cells, the absolute amount of full-length CFTR mRNA increases 8-fold, whereas the amount of 9- mRNA increases 18-fold. The fraction of 9- mRNA in the CFTR mRNA pool is increased in differentiated HT29 cells. The results show that gene transcription regulates the abundance of CFTR transcripts and that regulatory control of alternative RNA splicing may also be a cellular mechanism to modulate CFTR function.
doi_str_mv 10.1016/S0021-9258(18)41774-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73185326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16347837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-8895436d947d97fb7fe0bee60a42ee7cf878a3e29ec94dfc2792a22dcb24ce473</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EKkPhESp5gVC7CPgvsb2sRhSQKpCGIrGzHOdmxsj5wU6K-kS8Js5k1C7x5i7Od-69vgehC0reU0KrD98JYbTQrFSXVF0JKqUo5DO0oUTxgpf053O0eUReolcp_SL5CU3P0BnlihFJN-jvDvZzsJMfejy02D2kyTvc-joOySc8RdunDro6V8Bu6JvZTbZ3gOPqGyK-3N7c7a7wHjJx5F3047Gh7RtswwSxzwPuAe--XuM0Bu98v8c-67gbGgjL4AbuIQzjKkyQt-htwDD66QDBz91r9KK1IcGbUz1HP24-3m0_F7ffPn3ZXt8WTggyFUrpUvCq0UI2Wra1bIHUABWxggFI1yqpLAemwWnRtI5JzSxjjauZcCAkP0fv1r5jHH7PeQ_T-eQghPz_YU5GcqpKzqr_grTiQiq-dCxX0OWTpgitGaPvbHwwlJglSXNM0iwxGarMMUmz-C5OA-a6g-bJtUaX9bcn3SZnQ5sv73x6xATnjFL5hB38_vDHRzC1H9wBOsMqaZg0VDOt-T9xwLY1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16347837</pqid></control><display><type>article</type><title>Regulation of cystic fibrosis transmembrane conductance regulator (CFTR) gene transcription and alternative RNA splicing in a model of developing intestinal epithelium</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Montrose-Rafizadeh, C ; Blackmon, D L ; Hamosh, A ; Oliva, M M ; Hawkins, A L ; Curristin, S M ; Griffin, C A ; Yang, V W ; Guggino, W B ; Cutting, G R</creator><creatorcontrib>Montrose-Rafizadeh, C ; Blackmon, D L ; Hamosh, A ; Oliva, M M ; Hawkins, A L ; Curristin, S M ; Griffin, C A ; Yang, V W ; Guggino, W B ; Cutting, G R</creatorcontrib><description>Transcriptional and post-transcriptional regulation of CFTR (cystic fibrosis transmembrane conductance regulator) gene expression was studied in HT29 cells. It is known that the abundance of CFTR mRNA increases during differentiation of pluripotent HT29-18 cells and is maintained at high levels in the stably differentiated HT29-18-C1 subclone. Nuclear run-on assays suggest that increased transcription of the CFTR gene explains the increased abundance of total CFTR mRNA in differentiated HT29 cells. The increased transcription cannot be ascribed to cell cycle-dependent expression of the CFTR gene or to changes in CFTR gene copy number between subcloned cells. Similar to native tissue cells, differentiated HT29 cells contain low copy numbers of CFTR transcripts (1-5/cell), and a portion of the CFTR transcripts are alternatively spliced to remove exon 9 (and make 9-mRNA). During differentiation of HT29-18 cells, the absolute amount of full-length CFTR mRNA increases 8-fold, whereas the amount of 9- mRNA increases 18-fold. The fraction of 9- mRNA in the CFTR mRNA pool is increased in differentiated HT29 cells. The results show that gene transcription regulates the abundance of CFTR transcripts and that regulatory control of alternative RNA splicing may also be a cellular mechanism to modulate CFTR function.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/S0021-9258(18)41774-7</identifier><identifier>PMID: 1382071</identifier><identifier>CODEN: JBCHA3</identifier><language>eng</language><publisher>Bethesda, MD: American Society for Biochemistry and Molecular Biology</publisher><subject>Base Sequence ; Biological and medical sciences ; Cell Cycle ; Cell Differentiation ; Chromosomes, Human, Pair 7 ; cystic fibrosis ; Cystic Fibrosis Transmembrane Conductance Regulator ; development ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation ; genes ; HT29 cells ; Humans ; In Vitro Techniques ; Intestinal Mucosa - cytology ; Intestinal Mucosa - physiology ; intestine ; Membrane Proteins - genetics ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; Oligodeoxyribonucleotides - chemistry ; regulation ; RNA ; RNA Splicing ; RNA, Messenger - genetics ; splicing ; transcription ; Transcription, Genetic ; transmembrane conductance regulator ; Tumor Cells, Cultured</subject><ispartof>The Journal of biological chemistry, 1992-09, Vol.267 (27), p.19299-19305</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-8895436d947d97fb7fe0bee60a42ee7cf878a3e29ec94dfc2792a22dcb24ce473</citedby><cites>FETCH-LOGICAL-c440t-8895436d947d97fb7fe0bee60a42ee7cf878a3e29ec94dfc2792a22dcb24ce473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4332117$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1382071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Montrose-Rafizadeh, C</creatorcontrib><creatorcontrib>Blackmon, D L</creatorcontrib><creatorcontrib>Hamosh, A</creatorcontrib><creatorcontrib>Oliva, M M</creatorcontrib><creatorcontrib>Hawkins, A L</creatorcontrib><creatorcontrib>Curristin, S M</creatorcontrib><creatorcontrib>Griffin, C A</creatorcontrib><creatorcontrib>Yang, V W</creatorcontrib><creatorcontrib>Guggino, W B</creatorcontrib><creatorcontrib>Cutting, G R</creatorcontrib><title>Regulation of cystic fibrosis transmembrane conductance regulator (CFTR) gene transcription and alternative RNA splicing in a model of developing intestinal epithelium</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Transcriptional and post-transcriptional regulation of CFTR (cystic fibrosis transmembrane conductance regulator) gene expression was studied in HT29 cells. It is known that the abundance of CFTR mRNA increases during differentiation of pluripotent HT29-18 cells and is maintained at high levels in the stably differentiated HT29-18-C1 subclone. Nuclear run-on assays suggest that increased transcription of the CFTR gene explains the increased abundance of total CFTR mRNA in differentiated HT29 cells. The increased transcription cannot be ascribed to cell cycle-dependent expression of the CFTR gene or to changes in CFTR gene copy number between subcloned cells. Similar to native tissue cells, differentiated HT29 cells contain low copy numbers of CFTR transcripts (1-5/cell), and a portion of the CFTR transcripts are alternatively spliced to remove exon 9 (and make 9-mRNA). During differentiation of HT29-18 cells, the absolute amount of full-length CFTR mRNA increases 8-fold, whereas the amount of 9- mRNA increases 18-fold. The fraction of 9- mRNA in the CFTR mRNA pool is increased in differentiated HT29 cells. The results show that gene transcription regulates the abundance of CFTR transcripts and that regulatory control of alternative RNA splicing may also be a cellular mechanism to modulate CFTR function.</description><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Cell Cycle</subject><subject>Cell Differentiation</subject><subject>Chromosomes, Human, Pair 7</subject><subject>cystic fibrosis</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator</subject><subject>development</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>genes</subject><subject>HT29 cells</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Intestinal Mucosa - cytology</subject><subject>Intestinal Mucosa - physiology</subject><subject>intestine</subject><subject>Membrane Proteins - genetics</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>Oligodeoxyribonucleotides - chemistry</subject><subject>regulation</subject><subject>RNA</subject><subject>RNA Splicing</subject><subject>RNA, Messenger - genetics</subject><subject>splicing</subject><subject>transcription</subject><subject>Transcription, Genetic</subject><subject>transmembrane conductance regulator</subject><subject>Tumor Cells, Cultured</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EKkPhESp5gVC7CPgvsb2sRhSQKpCGIrGzHOdmxsj5wU6K-kS8Js5k1C7x5i7Od-69vgehC0reU0KrD98JYbTQrFSXVF0JKqUo5DO0oUTxgpf053O0eUReolcp_SL5CU3P0BnlihFJN-jvDvZzsJMfejy02D2kyTvc-joOySc8RdunDro6V8Bu6JvZTbZ3gOPqGyK-3N7c7a7wHjJx5F3047Gh7RtswwSxzwPuAe--XuM0Bu98v8c-67gbGgjL4AbuIQzjKkyQt-htwDD66QDBz91r9KK1IcGbUz1HP24-3m0_F7ffPn3ZXt8WTggyFUrpUvCq0UI2Wra1bIHUABWxggFI1yqpLAemwWnRtI5JzSxjjauZcCAkP0fv1r5jHH7PeQ_T-eQghPz_YU5GcqpKzqr_grTiQiq-dCxX0OWTpgitGaPvbHwwlJglSXNM0iwxGarMMUmz-C5OA-a6g-bJtUaX9bcn3SZnQ5sv73x6xATnjFL5hB38_vDHRzC1H9wBOsMqaZg0VDOt-T9xwLY1</recordid><startdate>19920925</startdate><enddate>19920925</enddate><creator>Montrose-Rafizadeh, C</creator><creator>Blackmon, D L</creator><creator>Hamosh, A</creator><creator>Oliva, M M</creator><creator>Hawkins, A L</creator><creator>Curristin, S M</creator><creator>Griffin, C A</creator><creator>Yang, V W</creator><creator>Guggino, W B</creator><creator>Cutting, G R</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T3</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19920925</creationdate><title>Regulation of cystic fibrosis transmembrane conductance regulator (CFTR) gene transcription and alternative RNA splicing in a model of developing intestinal epithelium</title><author>Montrose-Rafizadeh, C ; Blackmon, D L ; Hamosh, A ; Oliva, M M ; Hawkins, A L ; Curristin, S M ; Griffin, C A ; Yang, V W ; Guggino, W B ; Cutting, G R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-8895436d947d97fb7fe0bee60a42ee7cf878a3e29ec94dfc2792a22dcb24ce473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Cell Cycle</topic><topic>Cell Differentiation</topic><topic>Chromosomes, Human, Pair 7</topic><topic>cystic fibrosis</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator</topic><topic>development</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>genes</topic><topic>HT29 cells</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Intestinal Mucosa - cytology</topic><topic>Intestinal Mucosa - physiology</topic><topic>intestine</topic><topic>Membrane Proteins - genetics</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>Oligodeoxyribonucleotides - chemistry</topic><topic>regulation</topic><topic>RNA</topic><topic>RNA Splicing</topic><topic>RNA, Messenger - genetics</topic><topic>splicing</topic><topic>transcription</topic><topic>Transcription, Genetic</topic><topic>transmembrane conductance regulator</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montrose-Rafizadeh, C</creatorcontrib><creatorcontrib>Blackmon, D L</creatorcontrib><creatorcontrib>Hamosh, A</creatorcontrib><creatorcontrib>Oliva, M M</creatorcontrib><creatorcontrib>Hawkins, A L</creatorcontrib><creatorcontrib>Curristin, S M</creatorcontrib><creatorcontrib>Griffin, C A</creatorcontrib><creatorcontrib>Yang, V W</creatorcontrib><creatorcontrib>Guggino, W B</creatorcontrib><creatorcontrib>Cutting, G R</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Human Genome Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montrose-Rafizadeh, C</au><au>Blackmon, D L</au><au>Hamosh, A</au><au>Oliva, M M</au><au>Hawkins, A L</au><au>Curristin, S M</au><au>Griffin, C A</au><au>Yang, V W</au><au>Guggino, W B</au><au>Cutting, G R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of cystic fibrosis transmembrane conductance regulator (CFTR) gene transcription and alternative RNA splicing in a model of developing intestinal epithelium</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1992-09-25</date><risdate>1992</risdate><volume>267</volume><issue>27</issue><spage>19299</spage><epage>19305</epage><pages>19299-19305</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><coden>JBCHA3</coden><abstract>Transcriptional and post-transcriptional regulation of CFTR (cystic fibrosis transmembrane conductance regulator) gene expression was studied in HT29 cells. It is known that the abundance of CFTR mRNA increases during differentiation of pluripotent HT29-18 cells and is maintained at high levels in the stably differentiated HT29-18-C1 subclone. Nuclear run-on assays suggest that increased transcription of the CFTR gene explains the increased abundance of total CFTR mRNA in differentiated HT29 cells. The increased transcription cannot be ascribed to cell cycle-dependent expression of the CFTR gene or to changes in CFTR gene copy number between subcloned cells. Similar to native tissue cells, differentiated HT29 cells contain low copy numbers of CFTR transcripts (1-5/cell), and a portion of the CFTR transcripts are alternatively spliced to remove exon 9 (and make 9-mRNA). During differentiation of HT29-18 cells, the absolute amount of full-length CFTR mRNA increases 8-fold, whereas the amount of 9- mRNA increases 18-fold. The fraction of 9- mRNA in the CFTR mRNA pool is increased in differentiated HT29 cells. The results show that gene transcription regulates the abundance of CFTR transcripts and that regulatory control of alternative RNA splicing may also be a cellular mechanism to modulate CFTR function.</abstract><cop>Bethesda, MD</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>1382071</pmid><doi>10.1016/S0021-9258(18)41774-7</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1992-09, Vol.267 (27), p.19299-19305
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_73185326
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Base Sequence
Biological and medical sciences
Cell Cycle
Cell Differentiation
Chromosomes, Human, Pair 7
cystic fibrosis
Cystic Fibrosis Transmembrane Conductance Regulator
development
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Expression Regulation
genes
HT29 cells
Humans
In Vitro Techniques
Intestinal Mucosa - cytology
Intestinal Mucosa - physiology
intestine
Membrane Proteins - genetics
Molecular and cellular biology
Molecular genetics
Molecular Sequence Data
Oligodeoxyribonucleotides - chemistry
regulation
RNA
RNA Splicing
RNA, Messenger - genetics
splicing
transcription
Transcription, Genetic
transmembrane conductance regulator
Tumor Cells, Cultured
title Regulation of cystic fibrosis transmembrane conductance regulator (CFTR) gene transcription and alternative RNA splicing in a model of developing intestinal epithelium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20cystic%20fibrosis%20transmembrane%20conductance%20regulator%20(CFTR)%20gene%20transcription%20and%20alternative%20RNA%20splicing%20in%20a%20model%20of%20developing%20intestinal%20epithelium&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Montrose-Rafizadeh,%20C&rft.date=1992-09-25&rft.volume=267&rft.issue=27&rft.spage=19299&rft.epage=19305&rft.pages=19299-19305&rft.issn=0021-9258&rft.eissn=1083-351X&rft.coden=JBCHA3&rft_id=info:doi/10.1016/S0021-9258(18)41774-7&rft_dat=%3Cproquest_cross%3E16347837%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16347837&rft_id=info:pmid/1382071&rfr_iscdi=true