Regulation of cystic fibrosis transmembrane conductance regulator (CFTR) gene transcription and alternative RNA splicing in a model of developing intestinal epithelium
Transcriptional and post-transcriptional regulation of CFTR (cystic fibrosis transmembrane conductance regulator) gene expression was studied in HT29 cells. It is known that the abundance of CFTR mRNA increases during differentiation of pluripotent HT29-18 cells and is maintained at high levels in t...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1992-09, Vol.267 (27), p.19299-19305 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19305 |
---|---|
container_issue | 27 |
container_start_page | 19299 |
container_title | The Journal of biological chemistry |
container_volume | 267 |
creator | Montrose-Rafizadeh, C Blackmon, D L Hamosh, A Oliva, M M Hawkins, A L Curristin, S M Griffin, C A Yang, V W Guggino, W B Cutting, G R |
description | Transcriptional and post-transcriptional regulation of CFTR (cystic fibrosis transmembrane conductance regulator) gene expression
was studied in HT29 cells. It is known that the abundance of CFTR mRNA increases during differentiation of pluripotent HT29-18
cells and is maintained at high levels in the stably differentiated HT29-18-C1 subclone. Nuclear run-on assays suggest that
increased transcription of the CFTR gene explains the increased abundance of total CFTR mRNA in differentiated HT29 cells.
The increased transcription cannot be ascribed to cell cycle-dependent expression of the CFTR gene or to changes in CFTR gene
copy number between subcloned cells. Similar to native tissue cells, differentiated HT29 cells contain low copy numbers of
CFTR transcripts (1-5/cell), and a portion of the CFTR transcripts are alternatively spliced to remove exon 9 (and make 9-mRNA).
During differentiation of HT29-18 cells, the absolute amount of full-length CFTR mRNA increases 8-fold, whereas the amount
of 9- mRNA increases 18-fold. The fraction of 9- mRNA in the CFTR mRNA pool is increased in differentiated HT29 cells. The
results show that gene transcription regulates the abundance of CFTR transcripts and that regulatory control of alternative
RNA splicing may also be a cellular mechanism to modulate CFTR function. |
doi_str_mv | 10.1016/S0021-9258(18)41774-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73185326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16347837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-8895436d947d97fb7fe0bee60a42ee7cf878a3e29ec94dfc2792a22dcb24ce473</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EKkPhESp5gVC7CPgvsb2sRhSQKpCGIrGzHOdmxsj5wU6K-kS8Js5k1C7x5i7Od-69vgehC0reU0KrD98JYbTQrFSXVF0JKqUo5DO0oUTxgpf053O0eUReolcp_SL5CU3P0BnlihFJN-jvDvZzsJMfejy02D2kyTvc-joOySc8RdunDro6V8Bu6JvZTbZ3gOPqGyK-3N7c7a7wHjJx5F3047Gh7RtswwSxzwPuAe--XuM0Bu98v8c-67gbGgjL4AbuIQzjKkyQt-htwDD66QDBz91r9KK1IcGbUz1HP24-3m0_F7ffPn3ZXt8WTggyFUrpUvCq0UI2Wra1bIHUABWxggFI1yqpLAemwWnRtI5JzSxjjauZcCAkP0fv1r5jHH7PeQ_T-eQghPz_YU5GcqpKzqr_grTiQiq-dCxX0OWTpgitGaPvbHwwlJglSXNM0iwxGarMMUmz-C5OA-a6g-bJtUaX9bcn3SZnQ5sv73x6xATnjFL5hB38_vDHRzC1H9wBOsMqaZg0VDOt-T9xwLY1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16347837</pqid></control><display><type>article</type><title>Regulation of cystic fibrosis transmembrane conductance regulator (CFTR) gene transcription and alternative RNA splicing in a model of developing intestinal epithelium</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Montrose-Rafizadeh, C ; Blackmon, D L ; Hamosh, A ; Oliva, M M ; Hawkins, A L ; Curristin, S M ; Griffin, C A ; Yang, V W ; Guggino, W B ; Cutting, G R</creator><creatorcontrib>Montrose-Rafizadeh, C ; Blackmon, D L ; Hamosh, A ; Oliva, M M ; Hawkins, A L ; Curristin, S M ; Griffin, C A ; Yang, V W ; Guggino, W B ; Cutting, G R</creatorcontrib><description>Transcriptional and post-transcriptional regulation of CFTR (cystic fibrosis transmembrane conductance regulator) gene expression
was studied in HT29 cells. It is known that the abundance of CFTR mRNA increases during differentiation of pluripotent HT29-18
cells and is maintained at high levels in the stably differentiated HT29-18-C1 subclone. Nuclear run-on assays suggest that
increased transcription of the CFTR gene explains the increased abundance of total CFTR mRNA in differentiated HT29 cells.
The increased transcription cannot be ascribed to cell cycle-dependent expression of the CFTR gene or to changes in CFTR gene
copy number between subcloned cells. Similar to native tissue cells, differentiated HT29 cells contain low copy numbers of
CFTR transcripts (1-5/cell), and a portion of the CFTR transcripts are alternatively spliced to remove exon 9 (and make 9-mRNA).
During differentiation of HT29-18 cells, the absolute amount of full-length CFTR mRNA increases 8-fold, whereas the amount
of 9- mRNA increases 18-fold. The fraction of 9- mRNA in the CFTR mRNA pool is increased in differentiated HT29 cells. The
results show that gene transcription regulates the abundance of CFTR transcripts and that regulatory control of alternative
RNA splicing may also be a cellular mechanism to modulate CFTR function.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/S0021-9258(18)41774-7</identifier><identifier>PMID: 1382071</identifier><identifier>CODEN: JBCHA3</identifier><language>eng</language><publisher>Bethesda, MD: American Society for Biochemistry and Molecular Biology</publisher><subject>Base Sequence ; Biological and medical sciences ; Cell Cycle ; Cell Differentiation ; Chromosomes, Human, Pair 7 ; cystic fibrosis ; Cystic Fibrosis Transmembrane Conductance Regulator ; development ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation ; genes ; HT29 cells ; Humans ; In Vitro Techniques ; Intestinal Mucosa - cytology ; Intestinal Mucosa - physiology ; intestine ; Membrane Proteins - genetics ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; Oligodeoxyribonucleotides - chemistry ; regulation ; RNA ; RNA Splicing ; RNA, Messenger - genetics ; splicing ; transcription ; Transcription, Genetic ; transmembrane conductance regulator ; Tumor Cells, Cultured</subject><ispartof>The Journal of biological chemistry, 1992-09, Vol.267 (27), p.19299-19305</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-8895436d947d97fb7fe0bee60a42ee7cf878a3e29ec94dfc2792a22dcb24ce473</citedby><cites>FETCH-LOGICAL-c440t-8895436d947d97fb7fe0bee60a42ee7cf878a3e29ec94dfc2792a22dcb24ce473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4332117$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1382071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Montrose-Rafizadeh, C</creatorcontrib><creatorcontrib>Blackmon, D L</creatorcontrib><creatorcontrib>Hamosh, A</creatorcontrib><creatorcontrib>Oliva, M M</creatorcontrib><creatorcontrib>Hawkins, A L</creatorcontrib><creatorcontrib>Curristin, S M</creatorcontrib><creatorcontrib>Griffin, C A</creatorcontrib><creatorcontrib>Yang, V W</creatorcontrib><creatorcontrib>Guggino, W B</creatorcontrib><creatorcontrib>Cutting, G R</creatorcontrib><title>Regulation of cystic fibrosis transmembrane conductance regulator (CFTR) gene transcription and alternative RNA splicing in a model of developing intestinal epithelium</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Transcriptional and post-transcriptional regulation of CFTR (cystic fibrosis transmembrane conductance regulator) gene expression
was studied in HT29 cells. It is known that the abundance of CFTR mRNA increases during differentiation of pluripotent HT29-18
cells and is maintained at high levels in the stably differentiated HT29-18-C1 subclone. Nuclear run-on assays suggest that
increased transcription of the CFTR gene explains the increased abundance of total CFTR mRNA in differentiated HT29 cells.
The increased transcription cannot be ascribed to cell cycle-dependent expression of the CFTR gene or to changes in CFTR gene
copy number between subcloned cells. Similar to native tissue cells, differentiated HT29 cells contain low copy numbers of
CFTR transcripts (1-5/cell), and a portion of the CFTR transcripts are alternatively spliced to remove exon 9 (and make 9-mRNA).
During differentiation of HT29-18 cells, the absolute amount of full-length CFTR mRNA increases 8-fold, whereas the amount
of 9- mRNA increases 18-fold. The fraction of 9- mRNA in the CFTR mRNA pool is increased in differentiated HT29 cells. The
results show that gene transcription regulates the abundance of CFTR transcripts and that regulatory control of alternative
RNA splicing may also be a cellular mechanism to modulate CFTR function.</description><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Cell Cycle</subject><subject>Cell Differentiation</subject><subject>Chromosomes, Human, Pair 7</subject><subject>cystic fibrosis</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator</subject><subject>development</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>genes</subject><subject>HT29 cells</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Intestinal Mucosa - cytology</subject><subject>Intestinal Mucosa - physiology</subject><subject>intestine</subject><subject>Membrane Proteins - genetics</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>Oligodeoxyribonucleotides - chemistry</subject><subject>regulation</subject><subject>RNA</subject><subject>RNA Splicing</subject><subject>RNA, Messenger - genetics</subject><subject>splicing</subject><subject>transcription</subject><subject>Transcription, Genetic</subject><subject>transmembrane conductance regulator</subject><subject>Tumor Cells, Cultured</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EKkPhESp5gVC7CPgvsb2sRhSQKpCGIrGzHOdmxsj5wU6K-kS8Js5k1C7x5i7Od-69vgehC0reU0KrD98JYbTQrFSXVF0JKqUo5DO0oUTxgpf053O0eUReolcp_SL5CU3P0BnlihFJN-jvDvZzsJMfejy02D2kyTvc-joOySc8RdunDro6V8Bu6JvZTbZ3gOPqGyK-3N7c7a7wHjJx5F3047Gh7RtswwSxzwPuAe--XuM0Bu98v8c-67gbGgjL4AbuIQzjKkyQt-htwDD66QDBz91r9KK1IcGbUz1HP24-3m0_F7ffPn3ZXt8WTggyFUrpUvCq0UI2Wra1bIHUABWxggFI1yqpLAemwWnRtI5JzSxjjauZcCAkP0fv1r5jHH7PeQ_T-eQghPz_YU5GcqpKzqr_grTiQiq-dCxX0OWTpgitGaPvbHwwlJglSXNM0iwxGarMMUmz-C5OA-a6g-bJtUaX9bcn3SZnQ5sv73x6xATnjFL5hB38_vDHRzC1H9wBOsMqaZg0VDOt-T9xwLY1</recordid><startdate>19920925</startdate><enddate>19920925</enddate><creator>Montrose-Rafizadeh, C</creator><creator>Blackmon, D L</creator><creator>Hamosh, A</creator><creator>Oliva, M M</creator><creator>Hawkins, A L</creator><creator>Curristin, S M</creator><creator>Griffin, C A</creator><creator>Yang, V W</creator><creator>Guggino, W B</creator><creator>Cutting, G R</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T3</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19920925</creationdate><title>Regulation of cystic fibrosis transmembrane conductance regulator (CFTR) gene transcription and alternative RNA splicing in a model of developing intestinal epithelium</title><author>Montrose-Rafizadeh, C ; Blackmon, D L ; Hamosh, A ; Oliva, M M ; Hawkins, A L ; Curristin, S M ; Griffin, C A ; Yang, V W ; Guggino, W B ; Cutting, G R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-8895436d947d97fb7fe0bee60a42ee7cf878a3e29ec94dfc2792a22dcb24ce473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Cell Cycle</topic><topic>Cell Differentiation</topic><topic>Chromosomes, Human, Pair 7</topic><topic>cystic fibrosis</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator</topic><topic>development</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>genes</topic><topic>HT29 cells</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Intestinal Mucosa - cytology</topic><topic>Intestinal Mucosa - physiology</topic><topic>intestine</topic><topic>Membrane Proteins - genetics</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>Oligodeoxyribonucleotides - chemistry</topic><topic>regulation</topic><topic>RNA</topic><topic>RNA Splicing</topic><topic>RNA, Messenger - genetics</topic><topic>splicing</topic><topic>transcription</topic><topic>Transcription, Genetic</topic><topic>transmembrane conductance regulator</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montrose-Rafizadeh, C</creatorcontrib><creatorcontrib>Blackmon, D L</creatorcontrib><creatorcontrib>Hamosh, A</creatorcontrib><creatorcontrib>Oliva, M M</creatorcontrib><creatorcontrib>Hawkins, A L</creatorcontrib><creatorcontrib>Curristin, S M</creatorcontrib><creatorcontrib>Griffin, C A</creatorcontrib><creatorcontrib>Yang, V W</creatorcontrib><creatorcontrib>Guggino, W B</creatorcontrib><creatorcontrib>Cutting, G R</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Human Genome Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montrose-Rafizadeh, C</au><au>Blackmon, D L</au><au>Hamosh, A</au><au>Oliva, M M</au><au>Hawkins, A L</au><au>Curristin, S M</au><au>Griffin, C A</au><au>Yang, V W</au><au>Guggino, W B</au><au>Cutting, G R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of cystic fibrosis transmembrane conductance regulator (CFTR) gene transcription and alternative RNA splicing in a model of developing intestinal epithelium</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1992-09-25</date><risdate>1992</risdate><volume>267</volume><issue>27</issue><spage>19299</spage><epage>19305</epage><pages>19299-19305</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><coden>JBCHA3</coden><abstract>Transcriptional and post-transcriptional regulation of CFTR (cystic fibrosis transmembrane conductance regulator) gene expression
was studied in HT29 cells. It is known that the abundance of CFTR mRNA increases during differentiation of pluripotent HT29-18
cells and is maintained at high levels in the stably differentiated HT29-18-C1 subclone. Nuclear run-on assays suggest that
increased transcription of the CFTR gene explains the increased abundance of total CFTR mRNA in differentiated HT29 cells.
The increased transcription cannot be ascribed to cell cycle-dependent expression of the CFTR gene or to changes in CFTR gene
copy number between subcloned cells. Similar to native tissue cells, differentiated HT29 cells contain low copy numbers of
CFTR transcripts (1-5/cell), and a portion of the CFTR transcripts are alternatively spliced to remove exon 9 (and make 9-mRNA).
During differentiation of HT29-18 cells, the absolute amount of full-length CFTR mRNA increases 8-fold, whereas the amount
of 9- mRNA increases 18-fold. The fraction of 9- mRNA in the CFTR mRNA pool is increased in differentiated HT29 cells. The
results show that gene transcription regulates the abundance of CFTR transcripts and that regulatory control of alternative
RNA splicing may also be a cellular mechanism to modulate CFTR function.</abstract><cop>Bethesda, MD</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>1382071</pmid><doi>10.1016/S0021-9258(18)41774-7</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 1992-09, Vol.267 (27), p.19299-19305 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_73185326 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Base Sequence Biological and medical sciences Cell Cycle Cell Differentiation Chromosomes, Human, Pair 7 cystic fibrosis Cystic Fibrosis Transmembrane Conductance Regulator development Fundamental and applied biological sciences. Psychology Gene expression Gene Expression Regulation genes HT29 cells Humans In Vitro Techniques Intestinal Mucosa - cytology Intestinal Mucosa - physiology intestine Membrane Proteins - genetics Molecular and cellular biology Molecular genetics Molecular Sequence Data Oligodeoxyribonucleotides - chemistry regulation RNA RNA Splicing RNA, Messenger - genetics splicing transcription Transcription, Genetic transmembrane conductance regulator Tumor Cells, Cultured |
title | Regulation of cystic fibrosis transmembrane conductance regulator (CFTR) gene transcription and alternative RNA splicing in a model of developing intestinal epithelium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20cystic%20fibrosis%20transmembrane%20conductance%20regulator%20(CFTR)%20gene%20transcription%20and%20alternative%20RNA%20splicing%20in%20a%20model%20of%20developing%20intestinal%20epithelium&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Montrose-Rafizadeh,%20C&rft.date=1992-09-25&rft.volume=267&rft.issue=27&rft.spage=19299&rft.epage=19305&rft.pages=19299-19305&rft.issn=0021-9258&rft.eissn=1083-351X&rft.coden=JBCHA3&rft_id=info:doi/10.1016/S0021-9258(18)41774-7&rft_dat=%3Cproquest_cross%3E16347837%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16347837&rft_id=info:pmid/1382071&rfr_iscdi=true |