Mechanism of Persistent Protein Kinase D1 Translocation and Activation
The specificity of many signal transduction pathways relies on the spatiotemporal features of each signaling step. G protein-coupled receptor-mediated activation of protein kinases leads to diverse cellular effects. Upon receptor activation, PKD1 and several C-type protein kinases (PKCs), translocat...
Gespeichert in:
Veröffentlicht in: | Developmental cell 2003-04, Vol.4 (4), p.561-574 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 574 |
---|---|
container_issue | 4 |
container_start_page | 561 |
container_title | Developmental cell |
container_volume | 4 |
creator | Oancea, Elena Bezzerides, Vassilios J. Greka, Anna Clapham, David E. |
description | The specificity of many signal transduction pathways relies on the spatiotemporal features of each signaling step. G protein-coupled receptor-mediated activation of protein kinases leads to diverse cellular effects. Upon receptor activation, PKD1 and several C-type protein kinases (PKCs), translocate to the plasma membrane and become catalytically active. Here we show that, unlike PKCs, PKD1 remains active at the membrane for hours. The two DAG binding C1 domains of PKD1 have distinct functional roles in targeting and maintaining PKD1 at the plasma membrane. C1A achieves fast, maximal, and reversible translocation, while C1B translocates partially, but persistently, to the plasma membrane. The persistent localization requires the C1B domain of PKD1, which binds Gαq. We incorporate the kinetics of PKD1 translocation into a three-state model that suggests how PKD1 binding to DAG and Gαq uniquely encodes frequency-dependent PKD1 signaling. |
doi_str_mv | 10.1016/S1534-5807(03)00087-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73181794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S153458070300087X</els_id><sourcerecordid>73181794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-f239f5d7bbfa2b39d3067d01c87739c49b1f04c7445dbfcb61c393b122310ae13</originalsourceid><addsrcrecordid>eNqFkN9LwzAQx4MoTqd_gtIn0Ydqrkmb9knGdCpOHDhhbyFNrxjp0plkA_97ux_io093B5_vHfch5AzoNVDIbt4gZTxOcyouKbuilOYinu2RI8hFHkOawn7X_yI9cuz9J-1ykNND0oMky4u04Edk9IL6Q1nj51FbRxN03viANkQT1wY0Nno2VnmM7iCaOmV902oVTGsjZatooINZbcYTclCrxuPprvbJ--h-OnyMx68PT8PBONZc8BDXCSvqtBJlWaukZEXFaCYqCjoXghWaFyXUlGvBeVqVtS4z0KxgJSQJA6oQWJ9cbPcuXPu1RB_k3HiNTaMstksvBYMcRME7MN2C2rXeO6zlwpm5ct8SqFwLlBuBcm1HUiY3AuWsy53vDizLOVZ_qZ2xDrjdAti9uTLopNcGrcbKONRBVq3558QPbmx_vw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73181794</pqid></control><display><type>article</type><title>Mechanism of Persistent Protein Kinase D1 Translocation and Activation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Oancea, Elena ; Bezzerides, Vassilios J. ; Greka, Anna ; Clapham, David E.</creator><creatorcontrib>Oancea, Elena ; Bezzerides, Vassilios J. ; Greka, Anna ; Clapham, David E.</creatorcontrib><description>The specificity of many signal transduction pathways relies on the spatiotemporal features of each signaling step. G protein-coupled receptor-mediated activation of protein kinases leads to diverse cellular effects. Upon receptor activation, PKD1 and several C-type protein kinases (PKCs), translocate to the plasma membrane and become catalytically active. Here we show that, unlike PKCs, PKD1 remains active at the membrane for hours. The two DAG binding C1 domains of PKD1 have distinct functional roles in targeting and maintaining PKD1 at the plasma membrane. C1A achieves fast, maximal, and reversible translocation, while C1B translocates partially, but persistently, to the plasma membrane. The persistent localization requires the C1B domain of PKD1, which binds Gαq. We incorporate the kinetics of PKD1 translocation into a three-state model that suggests how PKD1 binding to DAG and Gαq uniquely encodes frequency-dependent PKD1 signaling.</description><identifier>ISSN: 1534-5807</identifier><identifier>EISSN: 1878-1551</identifier><identifier>DOI: 10.1016/S1534-5807(03)00087-X</identifier><identifier>PMID: 12689594</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cell Membrane - enzymology ; Cells, Cultured ; Cholinergic Agonists - pharmacology ; Diglycerides - metabolism ; Eukaryotic Cells - enzymology ; GTP-Binding Protein alpha Subunits, Gq-G11 ; GTP-Binding Proteins - metabolism ; Heterotrimeric GTP-Binding Proteins - metabolism ; Hormones - metabolism ; Hormones - pharmacology ; Humans ; Models, Biological ; Mutation - genetics ; Protein Binding - physiology ; Protein Isoforms - metabolism ; Protein Kinase C - genetics ; Protein Kinase C - metabolism ; Protein Structure, Tertiary - physiology ; Protein Transport - physiology ; Reaction Time - drug effects ; Reaction Time - genetics ; Receptors, Cell Surface - metabolism ; Recombinant Fusion Proteins ; Signal Transduction - physiology</subject><ispartof>Developmental cell, 2003-04, Vol.4 (4), p.561-574</ispartof><rights>2003 Cell Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-f239f5d7bbfa2b39d3067d01c87739c49b1f04c7445dbfcb61c393b122310ae13</citedby><cites>FETCH-LOGICAL-c474t-f239f5d7bbfa2b39d3067d01c87739c49b1f04c7445dbfcb61c393b122310ae13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1534-5807(03)00087-X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12689594$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oancea, Elena</creatorcontrib><creatorcontrib>Bezzerides, Vassilios J.</creatorcontrib><creatorcontrib>Greka, Anna</creatorcontrib><creatorcontrib>Clapham, David E.</creatorcontrib><title>Mechanism of Persistent Protein Kinase D1 Translocation and Activation</title><title>Developmental cell</title><addtitle>Dev Cell</addtitle><description>The specificity of many signal transduction pathways relies on the spatiotemporal features of each signaling step. G protein-coupled receptor-mediated activation of protein kinases leads to diverse cellular effects. Upon receptor activation, PKD1 and several C-type protein kinases (PKCs), translocate to the plasma membrane and become catalytically active. Here we show that, unlike PKCs, PKD1 remains active at the membrane for hours. The two DAG binding C1 domains of PKD1 have distinct functional roles in targeting and maintaining PKD1 at the plasma membrane. C1A achieves fast, maximal, and reversible translocation, while C1B translocates partially, but persistently, to the plasma membrane. The persistent localization requires the C1B domain of PKD1, which binds Gαq. We incorporate the kinetics of PKD1 translocation into a three-state model that suggests how PKD1 binding to DAG and Gαq uniquely encodes frequency-dependent PKD1 signaling.</description><subject>Cell Membrane - enzymology</subject><subject>Cells, Cultured</subject><subject>Cholinergic Agonists - pharmacology</subject><subject>Diglycerides - metabolism</subject><subject>Eukaryotic Cells - enzymology</subject><subject>GTP-Binding Protein alpha Subunits, Gq-G11</subject><subject>GTP-Binding Proteins - metabolism</subject><subject>Heterotrimeric GTP-Binding Proteins - metabolism</subject><subject>Hormones - metabolism</subject><subject>Hormones - pharmacology</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Mutation - genetics</subject><subject>Protein Binding - physiology</subject><subject>Protein Isoforms - metabolism</subject><subject>Protein Kinase C - genetics</subject><subject>Protein Kinase C - metabolism</subject><subject>Protein Structure, Tertiary - physiology</subject><subject>Protein Transport - physiology</subject><subject>Reaction Time - drug effects</subject><subject>Reaction Time - genetics</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Recombinant Fusion Proteins</subject><subject>Signal Transduction - physiology</subject><issn>1534-5807</issn><issn>1878-1551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkN9LwzAQx4MoTqd_gtIn0Ydqrkmb9knGdCpOHDhhbyFNrxjp0plkA_97ux_io093B5_vHfch5AzoNVDIbt4gZTxOcyouKbuilOYinu2RI8hFHkOawn7X_yI9cuz9J-1ykNND0oMky4u04Edk9IL6Q1nj51FbRxN03viANkQT1wY0Nno2VnmM7iCaOmV902oVTGsjZatooINZbcYTclCrxuPprvbJ--h-OnyMx68PT8PBONZc8BDXCSvqtBJlWaukZEXFaCYqCjoXghWaFyXUlGvBeVqVtS4z0KxgJSQJA6oQWJ9cbPcuXPu1RB_k3HiNTaMstksvBYMcRME7MN2C2rXeO6zlwpm5ct8SqFwLlBuBcm1HUiY3AuWsy53vDizLOVZ_qZ2xDrjdAti9uTLopNcGrcbKONRBVq3558QPbmx_vw</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Oancea, Elena</creator><creator>Bezzerides, Vassilios J.</creator><creator>Greka, Anna</creator><creator>Clapham, David E.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030401</creationdate><title>Mechanism of Persistent Protein Kinase D1 Translocation and Activation</title><author>Oancea, Elena ; Bezzerides, Vassilios J. ; Greka, Anna ; Clapham, David E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-f239f5d7bbfa2b39d3067d01c87739c49b1f04c7445dbfcb61c393b122310ae13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Cell Membrane - enzymology</topic><topic>Cells, Cultured</topic><topic>Cholinergic Agonists - pharmacology</topic><topic>Diglycerides - metabolism</topic><topic>Eukaryotic Cells - enzymology</topic><topic>GTP-Binding Protein alpha Subunits, Gq-G11</topic><topic>GTP-Binding Proteins - metabolism</topic><topic>Heterotrimeric GTP-Binding Proteins - metabolism</topic><topic>Hormones - metabolism</topic><topic>Hormones - pharmacology</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Mutation - genetics</topic><topic>Protein Binding - physiology</topic><topic>Protein Isoforms - metabolism</topic><topic>Protein Kinase C - genetics</topic><topic>Protein Kinase C - metabolism</topic><topic>Protein Structure, Tertiary - physiology</topic><topic>Protein Transport - physiology</topic><topic>Reaction Time - drug effects</topic><topic>Reaction Time - genetics</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Recombinant Fusion Proteins</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oancea, Elena</creatorcontrib><creatorcontrib>Bezzerides, Vassilios J.</creatorcontrib><creatorcontrib>Greka, Anna</creatorcontrib><creatorcontrib>Clapham, David E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Developmental cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oancea, Elena</au><au>Bezzerides, Vassilios J.</au><au>Greka, Anna</au><au>Clapham, David E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Persistent Protein Kinase D1 Translocation and Activation</atitle><jtitle>Developmental cell</jtitle><addtitle>Dev Cell</addtitle><date>2003-04-01</date><risdate>2003</risdate><volume>4</volume><issue>4</issue><spage>561</spage><epage>574</epage><pages>561-574</pages><issn>1534-5807</issn><eissn>1878-1551</eissn><abstract>The specificity of many signal transduction pathways relies on the spatiotemporal features of each signaling step. G protein-coupled receptor-mediated activation of protein kinases leads to diverse cellular effects. Upon receptor activation, PKD1 and several C-type protein kinases (PKCs), translocate to the plasma membrane and become catalytically active. Here we show that, unlike PKCs, PKD1 remains active at the membrane for hours. The two DAG binding C1 domains of PKD1 have distinct functional roles in targeting and maintaining PKD1 at the plasma membrane. C1A achieves fast, maximal, and reversible translocation, while C1B translocates partially, but persistently, to the plasma membrane. The persistent localization requires the C1B domain of PKD1, which binds Gαq. We incorporate the kinetics of PKD1 translocation into a three-state model that suggests how PKD1 binding to DAG and Gαq uniquely encodes frequency-dependent PKD1 signaling.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12689594</pmid><doi>10.1016/S1534-5807(03)00087-X</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-5807 |
ispartof | Developmental cell, 2003-04, Vol.4 (4), p.561-574 |
issn | 1534-5807 1878-1551 |
language | eng |
recordid | cdi_proquest_miscellaneous_73181794 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Cell Membrane - enzymology Cells, Cultured Cholinergic Agonists - pharmacology Diglycerides - metabolism Eukaryotic Cells - enzymology GTP-Binding Protein alpha Subunits, Gq-G11 GTP-Binding Proteins - metabolism Heterotrimeric GTP-Binding Proteins - metabolism Hormones - metabolism Hormones - pharmacology Humans Models, Biological Mutation - genetics Protein Binding - physiology Protein Isoforms - metabolism Protein Kinase C - genetics Protein Kinase C - metabolism Protein Structure, Tertiary - physiology Protein Transport - physiology Reaction Time - drug effects Reaction Time - genetics Receptors, Cell Surface - metabolism Recombinant Fusion Proteins Signal Transduction - physiology |
title | Mechanism of Persistent Protein Kinase D1 Translocation and Activation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Persistent%20Protein%20Kinase%20D1%20Translocation%20and%20Activation&rft.jtitle=Developmental%20cell&rft.au=Oancea,%20Elena&rft.date=2003-04-01&rft.volume=4&rft.issue=4&rft.spage=561&rft.epage=574&rft.pages=561-574&rft.issn=1534-5807&rft.eissn=1878-1551&rft_id=info:doi/10.1016/S1534-5807(03)00087-X&rft_dat=%3Cproquest_cross%3E73181794%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73181794&rft_id=info:pmid/12689594&rft_els_id=S153458070300087X&rfr_iscdi=true |