The geometry of chaos synchronization
Chaos synchronization in coupled systems is often characterized by a map φ between the states of the components. In noninvertible systems, or in systems without inherent symmetries, the synchronization set—by which we mean graph(φ)—can be extremely complicated. We identify, describe, and give exampl...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2003-03, Vol.13 (1), p.151-164 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 164 |
---|---|
container_issue | 1 |
container_start_page | 151 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 13 |
creator | Barreto, Ernest Josić, Krešimir Morales, Carlos J. Sander, Evelyn So, Paul |
description | Chaos synchronization in coupled systems is often characterized by a map φ between the states of the components. In noninvertible systems, or in systems without inherent symmetries, the synchronization set—by which we mean graph(φ)—can be extremely complicated. We identify, describe, and give examples of several different complications that can arise, and we link each to inherent properties of the underlying dynamics. In brief, synchronization sets can in general become nondifferentiable, and in the more severe case of noninvertible dynamics, they might even be multivalued. We suggest two different ways to quantify these features, and we discuss possible failures in detecting chaos synchrony using standard continuity-based methods when these features are present. |
doi_str_mv | 10.1063/1.1512927 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_73179496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73179496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-5dfcfa61884dfb615f731d2f048cf7edd2ddd2d70679c989df567ff2374127b83</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgiq3VhS8gs1FQmJqTyXUpxRsU3NR1mOZiRzqTmkyF-vRO7WAXgotwsvj4D-dH6BzwGDAvbmEMDIgi4gANAUuVCy7J4fbPaA4M4wE6SekdYwykYMdoAIQLRgkZosvZwmVvLtSujZss-MwsypCytGnMIoam-irbKjSn6MiXy-TO-jlCrw_3s8lTPn15fJ7cTXNDQbQ5s974koOU1Po5B-ZFAZZ4TKXxwllL7PYJzIUySirrGRfek0JQIGIuixG62uWuYvhYu9TqukrGLZdl48I66S5OKKp4B6930MSQUnRer2JVl3GjAettJxp030lnL_rQ9bx2di_7EjpwswPJVO3Pvb_mM8R9kl5Z_x_-u_obO3F2ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73179496</pqid></control><display><type>article</type><title>The geometry of chaos synchronization</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Barreto, Ernest ; Josić, Krešimir ; Morales, Carlos J. ; Sander, Evelyn ; So, Paul</creator><creatorcontrib>Barreto, Ernest ; Josić, Krešimir ; Morales, Carlos J. ; Sander, Evelyn ; So, Paul</creatorcontrib><description>Chaos synchronization in coupled systems is often characterized by a map φ between the states of the components. In noninvertible systems, or in systems without inherent symmetries, the synchronization set—by which we mean graph(φ)—can be extremely complicated. We identify, describe, and give examples of several different complications that can arise, and we link each to inherent properties of the underlying dynamics. In brief, synchronization sets can in general become nondifferentiable, and in the more severe case of noninvertible dynamics, they might even be multivalued. We suggest two different ways to quantify these features, and we discuss possible failures in detecting chaos synchrony using standard continuity-based methods when these features are present.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.1512927</identifier><identifier>PMID: 12675422</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Animals ; Models, Theoretical ; Neurons - physiology ; Nonlinear Dynamics ; Physical Phenomena ; Physics</subject><ispartof>Chaos (Woodbury, N.Y.), 2003-03, Vol.13 (1), p.151-164</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-5dfcfa61884dfb615f731d2f048cf7edd2ddd2d70679c989df567ff2374127b83</citedby><cites>FETCH-LOGICAL-c417t-5dfcfa61884dfb615f731d2f048cf7edd2ddd2d70679c989df567ff2374127b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,1559,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12675422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barreto, Ernest</creatorcontrib><creatorcontrib>Josić, Krešimir</creatorcontrib><creatorcontrib>Morales, Carlos J.</creatorcontrib><creatorcontrib>Sander, Evelyn</creatorcontrib><creatorcontrib>So, Paul</creatorcontrib><title>The geometry of chaos synchronization</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Chaos synchronization in coupled systems is often characterized by a map φ between the states of the components. In noninvertible systems, or in systems without inherent symmetries, the synchronization set—by which we mean graph(φ)—can be extremely complicated. We identify, describe, and give examples of several different complications that can arise, and we link each to inherent properties of the underlying dynamics. In brief, synchronization sets can in general become nondifferentiable, and in the more severe case of noninvertible dynamics, they might even be multivalued. We suggest two different ways to quantify these features, and we discuss possible failures in detecting chaos synchrony using standard continuity-based methods when these features are present.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Models, Theoretical</subject><subject>Neurons - physiology</subject><subject>Nonlinear Dynamics</subject><subject>Physical Phenomena</subject><subject>Physics</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90MtKAzEUBuAgiq3VhS8gs1FQmJqTyXUpxRsU3NR1mOZiRzqTmkyF-vRO7WAXgotwsvj4D-dH6BzwGDAvbmEMDIgi4gANAUuVCy7J4fbPaA4M4wE6SekdYwykYMdoAIQLRgkZosvZwmVvLtSujZss-MwsypCytGnMIoam-irbKjSn6MiXy-TO-jlCrw_3s8lTPn15fJ7cTXNDQbQ5s974koOU1Po5B-ZFAZZ4TKXxwllL7PYJzIUySirrGRfek0JQIGIuixG62uWuYvhYu9TqukrGLZdl48I66S5OKKp4B6930MSQUnRer2JVl3GjAettJxp030lnL_rQ9bx2di_7EjpwswPJVO3Pvb_mM8R9kl5Z_x_-u_obO3F2ww</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Barreto, Ernest</creator><creator>Josić, Krešimir</creator><creator>Morales, Carlos J.</creator><creator>Sander, Evelyn</creator><creator>So, Paul</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030301</creationdate><title>The geometry of chaos synchronization</title><author>Barreto, Ernest ; Josić, Krešimir ; Morales, Carlos J. ; Sander, Evelyn ; So, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-5dfcfa61884dfb615f731d2f048cf7edd2ddd2d70679c989df567ff2374127b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Models, Theoretical</topic><topic>Neurons - physiology</topic><topic>Nonlinear Dynamics</topic><topic>Physical Phenomena</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barreto, Ernest</creatorcontrib><creatorcontrib>Josić, Krešimir</creatorcontrib><creatorcontrib>Morales, Carlos J.</creatorcontrib><creatorcontrib>Sander, Evelyn</creatorcontrib><creatorcontrib>So, Paul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barreto, Ernest</au><au>Josić, Krešimir</au><au>Morales, Carlos J.</au><au>Sander, Evelyn</au><au>So, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The geometry of chaos synchronization</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2003-03-01</date><risdate>2003</risdate><volume>13</volume><issue>1</issue><spage>151</spage><epage>164</epage><pages>151-164</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Chaos synchronization in coupled systems is often characterized by a map φ between the states of the components. In noninvertible systems, or in systems without inherent symmetries, the synchronization set—by which we mean graph(φ)—can be extremely complicated. We identify, describe, and give examples of several different complications that can arise, and we link each to inherent properties of the underlying dynamics. In brief, synchronization sets can in general become nondifferentiable, and in the more severe case of noninvertible dynamics, they might even be multivalued. We suggest two different ways to quantify these features, and we discuss possible failures in detecting chaos synchrony using standard continuity-based methods when these features are present.</abstract><cop>United States</cop><pmid>12675422</pmid><doi>10.1063/1.1512927</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2003-03, Vol.13 (1), p.151-164 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_proquest_miscellaneous_73179496 |
source | MEDLINE; AIP Journals Complete; AIP Digital Archive |
subjects | Algorithms Animals Models, Theoretical Neurons - physiology Nonlinear Dynamics Physical Phenomena Physics |
title | The geometry of chaos synchronization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A14%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20geometry%20of%20chaos%20synchronization&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Barreto,%20Ernest&rft.date=2003-03-01&rft.volume=13&rft.issue=1&rft.spage=151&rft.epage=164&rft.pages=151-164&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.1512927&rft_dat=%3Cproquest_pubme%3E73179496%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73179496&rft_id=info:pmid/12675422&rfr_iscdi=true |