The geometry of chaos synchronization

Chaos synchronization in coupled systems is often characterized by a map φ between the states of the components. In noninvertible systems, or in systems without inherent symmetries, the synchronization set—by which we mean graph(φ)—can be extremely complicated. We identify, describe, and give exampl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2003-03, Vol.13 (1), p.151-164
Hauptverfasser: Barreto, Ernest, Josić, Krešimir, Morales, Carlos J., Sander, Evelyn, So, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164
container_issue 1
container_start_page 151
container_title Chaos (Woodbury, N.Y.)
container_volume 13
creator Barreto, Ernest
Josić, Krešimir
Morales, Carlos J.
Sander, Evelyn
So, Paul
description Chaos synchronization in coupled systems is often characterized by a map φ between the states of the components. In noninvertible systems, or in systems without inherent symmetries, the synchronization set—by which we mean graph(φ)—can be extremely complicated. We identify, describe, and give examples of several different complications that can arise, and we link each to inherent properties of the underlying dynamics. In brief, synchronization sets can in general become nondifferentiable, and in the more severe case of noninvertible dynamics, they might even be multivalued. We suggest two different ways to quantify these features, and we discuss possible failures in detecting chaos synchrony using standard continuity-based methods when these features are present.
doi_str_mv 10.1063/1.1512927
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_73179496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73179496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-5dfcfa61884dfb615f731d2f048cf7edd2ddd2d70679c989df567ff2374127b83</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgiq3VhS8gs1FQmJqTyXUpxRsU3NR1mOZiRzqTmkyF-vRO7WAXgotwsvj4D-dH6BzwGDAvbmEMDIgi4gANAUuVCy7J4fbPaA4M4wE6SekdYwykYMdoAIQLRgkZosvZwmVvLtSujZss-MwsypCytGnMIoam-irbKjSn6MiXy-TO-jlCrw_3s8lTPn15fJ7cTXNDQbQ5s974koOU1Po5B-ZFAZZ4TKXxwllL7PYJzIUySirrGRfek0JQIGIuixG62uWuYvhYu9TqukrGLZdl48I66S5OKKp4B6930MSQUnRer2JVl3GjAettJxp030lnL_rQ9bx2di_7EjpwswPJVO3Pvb_mM8R9kl5Z_x_-u_obO3F2ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73179496</pqid></control><display><type>article</type><title>The geometry of chaos synchronization</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Barreto, Ernest ; Josić, Krešimir ; Morales, Carlos J. ; Sander, Evelyn ; So, Paul</creator><creatorcontrib>Barreto, Ernest ; Josić, Krešimir ; Morales, Carlos J. ; Sander, Evelyn ; So, Paul</creatorcontrib><description>Chaos synchronization in coupled systems is often characterized by a map φ between the states of the components. In noninvertible systems, or in systems without inherent symmetries, the synchronization set—by which we mean graph(φ)—can be extremely complicated. We identify, describe, and give examples of several different complications that can arise, and we link each to inherent properties of the underlying dynamics. In brief, synchronization sets can in general become nondifferentiable, and in the more severe case of noninvertible dynamics, they might even be multivalued. We suggest two different ways to quantify these features, and we discuss possible failures in detecting chaos synchrony using standard continuity-based methods when these features are present.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.1512927</identifier><identifier>PMID: 12675422</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Animals ; Models, Theoretical ; Neurons - physiology ; Nonlinear Dynamics ; Physical Phenomena ; Physics</subject><ispartof>Chaos (Woodbury, N.Y.), 2003-03, Vol.13 (1), p.151-164</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-5dfcfa61884dfb615f731d2f048cf7edd2ddd2d70679c989df567ff2374127b83</citedby><cites>FETCH-LOGICAL-c417t-5dfcfa61884dfb615f731d2f048cf7edd2ddd2d70679c989df567ff2374127b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,1559,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12675422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barreto, Ernest</creatorcontrib><creatorcontrib>Josić, Krešimir</creatorcontrib><creatorcontrib>Morales, Carlos J.</creatorcontrib><creatorcontrib>Sander, Evelyn</creatorcontrib><creatorcontrib>So, Paul</creatorcontrib><title>The geometry of chaos synchronization</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Chaos synchronization in coupled systems is often characterized by a map φ between the states of the components. In noninvertible systems, or in systems without inherent symmetries, the synchronization set—by which we mean graph(φ)—can be extremely complicated. We identify, describe, and give examples of several different complications that can arise, and we link each to inherent properties of the underlying dynamics. In brief, synchronization sets can in general become nondifferentiable, and in the more severe case of noninvertible dynamics, they might even be multivalued. We suggest two different ways to quantify these features, and we discuss possible failures in detecting chaos synchrony using standard continuity-based methods when these features are present.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Models, Theoretical</subject><subject>Neurons - physiology</subject><subject>Nonlinear Dynamics</subject><subject>Physical Phenomena</subject><subject>Physics</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90MtKAzEUBuAgiq3VhS8gs1FQmJqTyXUpxRsU3NR1mOZiRzqTmkyF-vRO7WAXgotwsvj4D-dH6BzwGDAvbmEMDIgi4gANAUuVCy7J4fbPaA4M4wE6SekdYwykYMdoAIQLRgkZosvZwmVvLtSujZss-MwsypCytGnMIoam-irbKjSn6MiXy-TO-jlCrw_3s8lTPn15fJ7cTXNDQbQ5s974koOU1Po5B-ZFAZZ4TKXxwllL7PYJzIUySirrGRfek0JQIGIuixG62uWuYvhYu9TqukrGLZdl48I66S5OKKp4B6930MSQUnRer2JVl3GjAettJxp030lnL_rQ9bx2di_7EjpwswPJVO3Pvb_mM8R9kl5Z_x_-u_obO3F2ww</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Barreto, Ernest</creator><creator>Josić, Krešimir</creator><creator>Morales, Carlos J.</creator><creator>Sander, Evelyn</creator><creator>So, Paul</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030301</creationdate><title>The geometry of chaos synchronization</title><author>Barreto, Ernest ; Josić, Krešimir ; Morales, Carlos J. ; Sander, Evelyn ; So, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-5dfcfa61884dfb615f731d2f048cf7edd2ddd2d70679c989df567ff2374127b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Models, Theoretical</topic><topic>Neurons - physiology</topic><topic>Nonlinear Dynamics</topic><topic>Physical Phenomena</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barreto, Ernest</creatorcontrib><creatorcontrib>Josić, Krešimir</creatorcontrib><creatorcontrib>Morales, Carlos J.</creatorcontrib><creatorcontrib>Sander, Evelyn</creatorcontrib><creatorcontrib>So, Paul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barreto, Ernest</au><au>Josić, Krešimir</au><au>Morales, Carlos J.</au><au>Sander, Evelyn</au><au>So, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The geometry of chaos synchronization</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2003-03-01</date><risdate>2003</risdate><volume>13</volume><issue>1</issue><spage>151</spage><epage>164</epage><pages>151-164</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Chaos synchronization in coupled systems is often characterized by a map φ between the states of the components. In noninvertible systems, or in systems without inherent symmetries, the synchronization set—by which we mean graph(φ)—can be extremely complicated. We identify, describe, and give examples of several different complications that can arise, and we link each to inherent properties of the underlying dynamics. In brief, synchronization sets can in general become nondifferentiable, and in the more severe case of noninvertible dynamics, they might even be multivalued. We suggest two different ways to quantify these features, and we discuss possible failures in detecting chaos synchrony using standard continuity-based methods when these features are present.</abstract><cop>United States</cop><pmid>12675422</pmid><doi>10.1063/1.1512927</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2003-03, Vol.13 (1), p.151-164
issn 1054-1500
1089-7682
language eng
recordid cdi_proquest_miscellaneous_73179496
source MEDLINE; AIP Journals Complete; AIP Digital Archive
subjects Algorithms
Animals
Models, Theoretical
Neurons - physiology
Nonlinear Dynamics
Physical Phenomena
Physics
title The geometry of chaos synchronization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A14%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20geometry%20of%20chaos%20synchronization&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Barreto,%20Ernest&rft.date=2003-03-01&rft.volume=13&rft.issue=1&rft.spage=151&rft.epage=164&rft.pages=151-164&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.1512927&rft_dat=%3Cproquest_pubme%3E73179496%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73179496&rft_id=info:pmid/12675422&rfr_iscdi=true