Targeted Disruption of the ATP2A1 Gene Encoding the Sarco(endo)plasmic Reticulum Ca2+ ATPase Isoform 1 (SERCA1) Impairs Diaphragm Function and Is Lethal in Neonatal Mice

Mutations in the ATP2A1 gene, encoding isoform 1 of the sarco(endo)plasmic reticulum Ca 2+ -ATPase (SERCA1), are one cause of Brody disease, characterized in humans by exercise-induced contraction of fast twitch (type II) skeletal muscle fibers. In an attempt to create a model for Brody disease, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2003-04, Vol.278 (15), p.13367-13375
Hauptverfasser: Pan, Yan, Zvaritch, Elena, Tupling, A Russ, Rice, William J, de Leon, Stella, Rudnicki, Michael, McKerlie, Colin, Banwell, Brenda L, MacLennan, David H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13375
container_issue 15
container_start_page 13367
container_title The Journal of biological chemistry
container_volume 278
creator Pan, Yan
Zvaritch, Elena
Tupling, A Russ
Rice, William J
de Leon, Stella
Rudnicki, Michael
McKerlie, Colin
Banwell, Brenda L
MacLennan, David H
description Mutations in the ATP2A1 gene, encoding isoform 1 of the sarco(endo)plasmic reticulum Ca 2+ -ATPase (SERCA1), are one cause of Brody disease, characterized in humans by exercise-induced contraction of fast twitch (type II) skeletal muscle fibers. In an attempt to create a model for Brody disease, the mouse ATP2A1 gene was targeted to generate a SERCA1-null mutant mouse line. In contrast to humans, term SERCA1-null mice had progressive cyanosis and gasping respiration and succumbed from respiratory failure shortly after birth. The percentage of affected homozygote SERCA1 −/− mice was consistent with predicted Mendelian inheritance. A survey of multiple organs from 10-, 15-, and 18-day embryos revealed no morphological abnormalities, but analysis of the lungs in term mice revealed diffuse congestion and epithelial hypercellularity and studies of the diaphragm muscle revealed prominent hypercontracted regions in scattered fibers and increased fiber size variability. The V max of Ca 2+ transport activity in mutant diaphragm and skeletal muscle was reduced by 80% compared with wild-type muscle, and the contractile response to electrical stimulation under physiological conditions was reduced dramatically in mutant diaphragm muscle. No compensatory responses were detected in analysis of mRNAs encoding other Ca 2+ handling proteins or of protein levels. Expression of ATP2A1 is largely restricted to type II fibers, which predominate in normal mouse diaphragm. The absence of SERCA1 in type II fibers, and the absence of compensatory increases in other Ca 2+ handling proteins, coupled with the marked increase in contractile function required of the diaphragm muscle to support postnatal respiration, can account for respiratory failure in term SERCA1-null mice.
doi_str_mv 10.1074/jbc.M213228200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73177202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73177202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-e71ba3f819dc33f2c8e8eb9a4db7582dbd0b99a1ee0b39c0be5d5bcb8ad854d43</originalsourceid><addsrcrecordid>eNpFkUtrGzEUhUVpady02y6LFqUklHH1sDKapXGd1OC0JXGhO6HHHY_CjDSRZij5SfmXncSG3M29cL9zzuIg9JGSOSXl4tudsfNrRjljkhHyCs0okbzggv59jWaEMFpUTMgT9C7nOzLNoqJv0QllQlwIRmfocafTHgZw-LvPaewHHwOONR4awMvdb7ak-AoC4HWw0fmwf37c6mTjGQQXz_tW585bfAODt2M7dnil2dcnqc6ANznWMXWY4rPb9c1qSc_xpuu1T3mK032T9L7Dl2Owz7E6uEmBtzA0usU-4J8Qgx6m-9pbeI_e1LrN8OG4T9Gfy_Vu9aPY_rrarJbbwrKKDQWU1GheS1o5y3nNrAQJptILZ0ohmTOOmKrSFIAYXlliQDhhrJHaSbFwC36Kvhx8-xTvR8iD6ny20LY6QByzKjktS0bYBM4PoE0x5wS16pPvdHpQlKinctRUjnopZxJ8OjqPpgP3gh_bmIDPB6Dx--afT6CMj7aBTrFSKioU5fyi5P8BpBWWlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73177202</pqid></control><display><type>article</type><title>Targeted Disruption of the ATP2A1 Gene Encoding the Sarco(endo)plasmic Reticulum Ca2+ ATPase Isoform 1 (SERCA1) Impairs Diaphragm Function and Is Lethal in Neonatal Mice</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Pan, Yan ; Zvaritch, Elena ; Tupling, A Russ ; Rice, William J ; de Leon, Stella ; Rudnicki, Michael ; McKerlie, Colin ; Banwell, Brenda L ; MacLennan, David H</creator><creatorcontrib>Pan, Yan ; Zvaritch, Elena ; Tupling, A Russ ; Rice, William J ; de Leon, Stella ; Rudnicki, Michael ; McKerlie, Colin ; Banwell, Brenda L ; MacLennan, David H</creatorcontrib><description>Mutations in the ATP2A1 gene, encoding isoform 1 of the sarco(endo)plasmic reticulum Ca 2+ -ATPase (SERCA1), are one cause of Brody disease, characterized in humans by exercise-induced contraction of fast twitch (type II) skeletal muscle fibers. In an attempt to create a model for Brody disease, the mouse ATP2A1 gene was targeted to generate a SERCA1-null mutant mouse line. In contrast to humans, term SERCA1-null mice had progressive cyanosis and gasping respiration and succumbed from respiratory failure shortly after birth. The percentage of affected homozygote SERCA1 −/− mice was consistent with predicted Mendelian inheritance. A survey of multiple organs from 10-, 15-, and 18-day embryos revealed no morphological abnormalities, but analysis of the lungs in term mice revealed diffuse congestion and epithelial hypercellularity and studies of the diaphragm muscle revealed prominent hypercontracted regions in scattered fibers and increased fiber size variability. The V max of Ca 2+ transport activity in mutant diaphragm and skeletal muscle was reduced by 80% compared with wild-type muscle, and the contractile response to electrical stimulation under physiological conditions was reduced dramatically in mutant diaphragm muscle. No compensatory responses were detected in analysis of mRNAs encoding other Ca 2+ handling proteins or of protein levels. Expression of ATP2A1 is largely restricted to type II fibers, which predominate in normal mouse diaphragm. The absence of SERCA1 in type II fibers, and the absence of compensatory increases in other Ca 2+ handling proteins, coupled with the marked increase in contractile function required of the diaphragm muscle to support postnatal respiration, can account for respiratory failure in term SERCA1-null mice.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M213228200</identifier><identifier>PMID: 12556521</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>Animals ; Animals, Newborn ; Calcium-Transporting ATPases - deficiency ; Calcium-Transporting ATPases - genetics ; Calcium-Transporting ATPases - metabolism ; Diaphragm - pathology ; Diaphragm - physiology ; Diaphragm - ultrastructure ; Genes, Lethal ; Genotype ; Humans ; Kinetics ; Mice ; Mice, Transgenic ; Phenotype ; Respiratory Muscles - pathology ; Respiratory Muscles - physiology ; Respiratory Muscles - ultrastructure ; Restriction Mapping ; Sarcoplasmic Reticulum - enzymology ; Sarcoplasmic Reticulum Calcium-Transporting ATPases</subject><ispartof>The Journal of biological chemistry, 2003-04, Vol.278 (15), p.13367-13375</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-e71ba3f819dc33f2c8e8eb9a4db7582dbd0b99a1ee0b39c0be5d5bcb8ad854d43</citedby><cites>FETCH-LOGICAL-c292t-e71ba3f819dc33f2c8e8eb9a4db7582dbd0b99a1ee0b39c0be5d5bcb8ad854d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12556521$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Yan</creatorcontrib><creatorcontrib>Zvaritch, Elena</creatorcontrib><creatorcontrib>Tupling, A Russ</creatorcontrib><creatorcontrib>Rice, William J</creatorcontrib><creatorcontrib>de Leon, Stella</creatorcontrib><creatorcontrib>Rudnicki, Michael</creatorcontrib><creatorcontrib>McKerlie, Colin</creatorcontrib><creatorcontrib>Banwell, Brenda L</creatorcontrib><creatorcontrib>MacLennan, David H</creatorcontrib><title>Targeted Disruption of the ATP2A1 Gene Encoding the Sarco(endo)plasmic Reticulum Ca2+ ATPase Isoform 1 (SERCA1) Impairs Diaphragm Function and Is Lethal in Neonatal Mice</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Mutations in the ATP2A1 gene, encoding isoform 1 of the sarco(endo)plasmic reticulum Ca 2+ -ATPase (SERCA1), are one cause of Brody disease, characterized in humans by exercise-induced contraction of fast twitch (type II) skeletal muscle fibers. In an attempt to create a model for Brody disease, the mouse ATP2A1 gene was targeted to generate a SERCA1-null mutant mouse line. In contrast to humans, term SERCA1-null mice had progressive cyanosis and gasping respiration and succumbed from respiratory failure shortly after birth. The percentage of affected homozygote SERCA1 −/− mice was consistent with predicted Mendelian inheritance. A survey of multiple organs from 10-, 15-, and 18-day embryos revealed no morphological abnormalities, but analysis of the lungs in term mice revealed diffuse congestion and epithelial hypercellularity and studies of the diaphragm muscle revealed prominent hypercontracted regions in scattered fibers and increased fiber size variability. The V max of Ca 2+ transport activity in mutant diaphragm and skeletal muscle was reduced by 80% compared with wild-type muscle, and the contractile response to electrical stimulation under physiological conditions was reduced dramatically in mutant diaphragm muscle. No compensatory responses were detected in analysis of mRNAs encoding other Ca 2+ handling proteins or of protein levels. Expression of ATP2A1 is largely restricted to type II fibers, which predominate in normal mouse diaphragm. The absence of SERCA1 in type II fibers, and the absence of compensatory increases in other Ca 2+ handling proteins, coupled with the marked increase in contractile function required of the diaphragm muscle to support postnatal respiration, can account for respiratory failure in term SERCA1-null mice.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Calcium-Transporting ATPases - deficiency</subject><subject>Calcium-Transporting ATPases - genetics</subject><subject>Calcium-Transporting ATPases - metabolism</subject><subject>Diaphragm - pathology</subject><subject>Diaphragm - physiology</subject><subject>Diaphragm - ultrastructure</subject><subject>Genes, Lethal</subject><subject>Genotype</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Phenotype</subject><subject>Respiratory Muscles - pathology</subject><subject>Respiratory Muscles - physiology</subject><subject>Respiratory Muscles - ultrastructure</subject><subject>Restriction Mapping</subject><subject>Sarcoplasmic Reticulum - enzymology</subject><subject>Sarcoplasmic Reticulum Calcium-Transporting ATPases</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkUtrGzEUhUVpady02y6LFqUklHH1sDKapXGd1OC0JXGhO6HHHY_CjDSRZij5SfmXncSG3M29cL9zzuIg9JGSOSXl4tudsfNrRjljkhHyCs0okbzggv59jWaEMFpUTMgT9C7nOzLNoqJv0QllQlwIRmfocafTHgZw-LvPaewHHwOONR4awMvdb7ak-AoC4HWw0fmwf37c6mTjGQQXz_tW585bfAODt2M7dnil2dcnqc6ANznWMXWY4rPb9c1qSc_xpuu1T3mK032T9L7Dl2Owz7E6uEmBtzA0usU-4J8Qgx6m-9pbeI_e1LrN8OG4T9Gfy_Vu9aPY_rrarJbbwrKKDQWU1GheS1o5y3nNrAQJptILZ0ohmTOOmKrSFIAYXlliQDhhrJHaSbFwC36Kvhx8-xTvR8iD6ny20LY6QByzKjktS0bYBM4PoE0x5wS16pPvdHpQlKinctRUjnopZxJ8OjqPpgP3gh_bmIDPB6Dx--afT6CMj7aBTrFSKioU5fyi5P8BpBWWlQ</recordid><startdate>20030411</startdate><enddate>20030411</enddate><creator>Pan, Yan</creator><creator>Zvaritch, Elena</creator><creator>Tupling, A Russ</creator><creator>Rice, William J</creator><creator>de Leon, Stella</creator><creator>Rudnicki, Michael</creator><creator>McKerlie, Colin</creator><creator>Banwell, Brenda L</creator><creator>MacLennan, David H</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030411</creationdate><title>Targeted Disruption of the ATP2A1 Gene Encoding the Sarco(endo)plasmic Reticulum Ca2+ ATPase Isoform 1 (SERCA1) Impairs Diaphragm Function and Is Lethal in Neonatal Mice</title><author>Pan, Yan ; Zvaritch, Elena ; Tupling, A Russ ; Rice, William J ; de Leon, Stella ; Rudnicki, Michael ; McKerlie, Colin ; Banwell, Brenda L ; MacLennan, David H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-e71ba3f819dc33f2c8e8eb9a4db7582dbd0b99a1ee0b39c0be5d5bcb8ad854d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Calcium-Transporting ATPases - deficiency</topic><topic>Calcium-Transporting ATPases - genetics</topic><topic>Calcium-Transporting ATPases - metabolism</topic><topic>Diaphragm - pathology</topic><topic>Diaphragm - physiology</topic><topic>Diaphragm - ultrastructure</topic><topic>Genes, Lethal</topic><topic>Genotype</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Phenotype</topic><topic>Respiratory Muscles - pathology</topic><topic>Respiratory Muscles - physiology</topic><topic>Respiratory Muscles - ultrastructure</topic><topic>Restriction Mapping</topic><topic>Sarcoplasmic Reticulum - enzymology</topic><topic>Sarcoplasmic Reticulum Calcium-Transporting ATPases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Yan</creatorcontrib><creatorcontrib>Zvaritch, Elena</creatorcontrib><creatorcontrib>Tupling, A Russ</creatorcontrib><creatorcontrib>Rice, William J</creatorcontrib><creatorcontrib>de Leon, Stella</creatorcontrib><creatorcontrib>Rudnicki, Michael</creatorcontrib><creatorcontrib>McKerlie, Colin</creatorcontrib><creatorcontrib>Banwell, Brenda L</creatorcontrib><creatorcontrib>MacLennan, David H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Yan</au><au>Zvaritch, Elena</au><au>Tupling, A Russ</au><au>Rice, William J</au><au>de Leon, Stella</au><au>Rudnicki, Michael</au><au>McKerlie, Colin</au><au>Banwell, Brenda L</au><au>MacLennan, David H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeted Disruption of the ATP2A1 Gene Encoding the Sarco(endo)plasmic Reticulum Ca2+ ATPase Isoform 1 (SERCA1) Impairs Diaphragm Function and Is Lethal in Neonatal Mice</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2003-04-11</date><risdate>2003</risdate><volume>278</volume><issue>15</issue><spage>13367</spage><epage>13375</epage><pages>13367-13375</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Mutations in the ATP2A1 gene, encoding isoform 1 of the sarco(endo)plasmic reticulum Ca 2+ -ATPase (SERCA1), are one cause of Brody disease, characterized in humans by exercise-induced contraction of fast twitch (type II) skeletal muscle fibers. In an attempt to create a model for Brody disease, the mouse ATP2A1 gene was targeted to generate a SERCA1-null mutant mouse line. In contrast to humans, term SERCA1-null mice had progressive cyanosis and gasping respiration and succumbed from respiratory failure shortly after birth. The percentage of affected homozygote SERCA1 −/− mice was consistent with predicted Mendelian inheritance. A survey of multiple organs from 10-, 15-, and 18-day embryos revealed no morphological abnormalities, but analysis of the lungs in term mice revealed diffuse congestion and epithelial hypercellularity and studies of the diaphragm muscle revealed prominent hypercontracted regions in scattered fibers and increased fiber size variability. The V max of Ca 2+ transport activity in mutant diaphragm and skeletal muscle was reduced by 80% compared with wild-type muscle, and the contractile response to electrical stimulation under physiological conditions was reduced dramatically in mutant diaphragm muscle. No compensatory responses were detected in analysis of mRNAs encoding other Ca 2+ handling proteins or of protein levels. Expression of ATP2A1 is largely restricted to type II fibers, which predominate in normal mouse diaphragm. The absence of SERCA1 in type II fibers, and the absence of compensatory increases in other Ca 2+ handling proteins, coupled with the marked increase in contractile function required of the diaphragm muscle to support postnatal respiration, can account for respiratory failure in term SERCA1-null mice.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>12556521</pmid><doi>10.1074/jbc.M213228200</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2003-04, Vol.278 (15), p.13367-13375
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_73177202
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Animals, Newborn
Calcium-Transporting ATPases - deficiency
Calcium-Transporting ATPases - genetics
Calcium-Transporting ATPases - metabolism
Diaphragm - pathology
Diaphragm - physiology
Diaphragm - ultrastructure
Genes, Lethal
Genotype
Humans
Kinetics
Mice
Mice, Transgenic
Phenotype
Respiratory Muscles - pathology
Respiratory Muscles - physiology
Respiratory Muscles - ultrastructure
Restriction Mapping
Sarcoplasmic Reticulum - enzymology
Sarcoplasmic Reticulum Calcium-Transporting ATPases
title Targeted Disruption of the ATP2A1 Gene Encoding the Sarco(endo)plasmic Reticulum Ca2+ ATPase Isoform 1 (SERCA1) Impairs Diaphragm Function and Is Lethal in Neonatal Mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T09%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeted%20Disruption%20of%20the%20ATP2A1%20Gene%20Encoding%20the%20Sarco(endo)plasmic%20Reticulum%20Ca2+%20ATPase%20Isoform%201%20(SERCA1)%20Impairs%20Diaphragm%20Function%20and%20Is%20Lethal%20in%20Neonatal%20Mice&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Pan,%20Yan&rft.date=2003-04-11&rft.volume=278&rft.issue=15&rft.spage=13367&rft.epage=13375&rft.pages=13367-13375&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M213228200&rft_dat=%3Cproquest_cross%3E73177202%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73177202&rft_id=info:pmid/12556521&rfr_iscdi=true