Targeted Disruption of the ATP2A1 Gene Encoding the Sarco(endo)plasmic Reticulum Ca2+ ATPase Isoform 1 (SERCA1) Impairs Diaphragm Function and Is Lethal in Neonatal Mice
Mutations in the ATP2A1 gene, encoding isoform 1 of the sarco(endo)plasmic reticulum Ca 2+ -ATPase (SERCA1), are one cause of Brody disease, characterized in humans by exercise-induced contraction of fast twitch (type II) skeletal muscle fibers. In an attempt to create a model for Brody disease, the...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2003-04, Vol.278 (15), p.13367-13375 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13375 |
---|---|
container_issue | 15 |
container_start_page | 13367 |
container_title | The Journal of biological chemistry |
container_volume | 278 |
creator | Pan, Yan Zvaritch, Elena Tupling, A Russ Rice, William J de Leon, Stella Rudnicki, Michael McKerlie, Colin Banwell, Brenda L MacLennan, David H |
description | Mutations in the ATP2A1 gene, encoding isoform 1 of the sarco(endo)plasmic reticulum Ca 2+ -ATPase (SERCA1), are one cause of Brody disease, characterized in humans by exercise-induced contraction of fast twitch (type
II) skeletal muscle fibers. In an attempt to create a model for Brody disease, the mouse ATP2A1 gene was targeted to generate a SERCA1-null mutant mouse line. In contrast to humans, term SERCA1-null mice had progressive
cyanosis and gasping respiration and succumbed from respiratory failure shortly after birth. The percentage of affected homozygote
SERCA1 â/â mice was consistent with predicted Mendelian inheritance. A survey of multiple organs from 10-, 15-, and 18-day embryos revealed
no morphological abnormalities, but analysis of the lungs in term mice revealed diffuse congestion and epithelial hypercellularity
and studies of the diaphragm muscle revealed prominent hypercontracted regions in scattered fibers and increased fiber size
variability. The V
max of Ca 2+ transport activity in mutant diaphragm and skeletal muscle was reduced by 80% compared with wild-type muscle, and the contractile
response to electrical stimulation under physiological conditions was reduced dramatically in mutant diaphragm muscle. No
compensatory responses were detected in analysis of mRNAs encoding other Ca 2+ handling proteins or of protein levels. Expression of ATP2A1 is largely restricted to type II fibers, which predominate in normal mouse diaphragm. The absence of SERCA1 in type II fibers,
and the absence of compensatory increases in other Ca 2+ handling proteins, coupled with the marked increase in contractile function required of the diaphragm muscle to support postnatal
respiration, can account for respiratory failure in term SERCA1-null mice. |
doi_str_mv | 10.1074/jbc.M213228200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73177202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73177202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-e71ba3f819dc33f2c8e8eb9a4db7582dbd0b99a1ee0b39c0be5d5bcb8ad854d43</originalsourceid><addsrcrecordid>eNpFkUtrGzEUhUVpady02y6LFqUklHH1sDKapXGd1OC0JXGhO6HHHY_CjDSRZij5SfmXncSG3M29cL9zzuIg9JGSOSXl4tudsfNrRjljkhHyCs0okbzggv59jWaEMFpUTMgT9C7nOzLNoqJv0QllQlwIRmfocafTHgZw-LvPaewHHwOONR4awMvdb7ak-AoC4HWw0fmwf37c6mTjGQQXz_tW585bfAODt2M7dnil2dcnqc6ANznWMXWY4rPb9c1qSc_xpuu1T3mK032T9L7Dl2Owz7E6uEmBtzA0usU-4J8Qgx6m-9pbeI_e1LrN8OG4T9Gfy_Vu9aPY_rrarJbbwrKKDQWU1GheS1o5y3nNrAQJptILZ0ohmTOOmKrSFIAYXlliQDhhrJHaSbFwC36Kvhx8-xTvR8iD6ny20LY6QByzKjktS0bYBM4PoE0x5wS16pPvdHpQlKinctRUjnopZxJ8OjqPpgP3gh_bmIDPB6Dx--afT6CMj7aBTrFSKioU5fyi5P8BpBWWlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73177202</pqid></control><display><type>article</type><title>Targeted Disruption of the ATP2A1 Gene Encoding the Sarco(endo)plasmic Reticulum Ca2+ ATPase Isoform 1 (SERCA1) Impairs Diaphragm Function and Is Lethal in Neonatal Mice</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Pan, Yan ; Zvaritch, Elena ; Tupling, A Russ ; Rice, William J ; de Leon, Stella ; Rudnicki, Michael ; McKerlie, Colin ; Banwell, Brenda L ; MacLennan, David H</creator><creatorcontrib>Pan, Yan ; Zvaritch, Elena ; Tupling, A Russ ; Rice, William J ; de Leon, Stella ; Rudnicki, Michael ; McKerlie, Colin ; Banwell, Brenda L ; MacLennan, David H</creatorcontrib><description>Mutations in the ATP2A1 gene, encoding isoform 1 of the sarco(endo)plasmic reticulum Ca 2+ -ATPase (SERCA1), are one cause of Brody disease, characterized in humans by exercise-induced contraction of fast twitch (type
II) skeletal muscle fibers. In an attempt to create a model for Brody disease, the mouse ATP2A1 gene was targeted to generate a SERCA1-null mutant mouse line. In contrast to humans, term SERCA1-null mice had progressive
cyanosis and gasping respiration and succumbed from respiratory failure shortly after birth. The percentage of affected homozygote
SERCA1 â/â mice was consistent with predicted Mendelian inheritance. A survey of multiple organs from 10-, 15-, and 18-day embryos revealed
no morphological abnormalities, but analysis of the lungs in term mice revealed diffuse congestion and epithelial hypercellularity
and studies of the diaphragm muscle revealed prominent hypercontracted regions in scattered fibers and increased fiber size
variability. The V
max of Ca 2+ transport activity in mutant diaphragm and skeletal muscle was reduced by 80% compared with wild-type muscle, and the contractile
response to electrical stimulation under physiological conditions was reduced dramatically in mutant diaphragm muscle. No
compensatory responses were detected in analysis of mRNAs encoding other Ca 2+ handling proteins or of protein levels. Expression of ATP2A1 is largely restricted to type II fibers, which predominate in normal mouse diaphragm. The absence of SERCA1 in type II fibers,
and the absence of compensatory increases in other Ca 2+ handling proteins, coupled with the marked increase in contractile function required of the diaphragm muscle to support postnatal
respiration, can account for respiratory failure in term SERCA1-null mice.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M213228200</identifier><identifier>PMID: 12556521</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>Animals ; Animals, Newborn ; Calcium-Transporting ATPases - deficiency ; Calcium-Transporting ATPases - genetics ; Calcium-Transporting ATPases - metabolism ; Diaphragm - pathology ; Diaphragm - physiology ; Diaphragm - ultrastructure ; Genes, Lethal ; Genotype ; Humans ; Kinetics ; Mice ; Mice, Transgenic ; Phenotype ; Respiratory Muscles - pathology ; Respiratory Muscles - physiology ; Respiratory Muscles - ultrastructure ; Restriction Mapping ; Sarcoplasmic Reticulum - enzymology ; Sarcoplasmic Reticulum Calcium-Transporting ATPases</subject><ispartof>The Journal of biological chemistry, 2003-04, Vol.278 (15), p.13367-13375</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-e71ba3f819dc33f2c8e8eb9a4db7582dbd0b99a1ee0b39c0be5d5bcb8ad854d43</citedby><cites>FETCH-LOGICAL-c292t-e71ba3f819dc33f2c8e8eb9a4db7582dbd0b99a1ee0b39c0be5d5bcb8ad854d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12556521$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Yan</creatorcontrib><creatorcontrib>Zvaritch, Elena</creatorcontrib><creatorcontrib>Tupling, A Russ</creatorcontrib><creatorcontrib>Rice, William J</creatorcontrib><creatorcontrib>de Leon, Stella</creatorcontrib><creatorcontrib>Rudnicki, Michael</creatorcontrib><creatorcontrib>McKerlie, Colin</creatorcontrib><creatorcontrib>Banwell, Brenda L</creatorcontrib><creatorcontrib>MacLennan, David H</creatorcontrib><title>Targeted Disruption of the ATP2A1 Gene Encoding the Sarco(endo)plasmic Reticulum Ca2+ ATPase Isoform 1 (SERCA1) Impairs Diaphragm Function and Is Lethal in Neonatal Mice</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Mutations in the ATP2A1 gene, encoding isoform 1 of the sarco(endo)plasmic reticulum Ca 2+ -ATPase (SERCA1), are one cause of Brody disease, characterized in humans by exercise-induced contraction of fast twitch (type
II) skeletal muscle fibers. In an attempt to create a model for Brody disease, the mouse ATP2A1 gene was targeted to generate a SERCA1-null mutant mouse line. In contrast to humans, term SERCA1-null mice had progressive
cyanosis and gasping respiration and succumbed from respiratory failure shortly after birth. The percentage of affected homozygote
SERCA1 â/â mice was consistent with predicted Mendelian inheritance. A survey of multiple organs from 10-, 15-, and 18-day embryos revealed
no morphological abnormalities, but analysis of the lungs in term mice revealed diffuse congestion and epithelial hypercellularity
and studies of the diaphragm muscle revealed prominent hypercontracted regions in scattered fibers and increased fiber size
variability. The V
max of Ca 2+ transport activity in mutant diaphragm and skeletal muscle was reduced by 80% compared with wild-type muscle, and the contractile
response to electrical stimulation under physiological conditions was reduced dramatically in mutant diaphragm muscle. No
compensatory responses were detected in analysis of mRNAs encoding other Ca 2+ handling proteins or of protein levels. Expression of ATP2A1 is largely restricted to type II fibers, which predominate in normal mouse diaphragm. The absence of SERCA1 in type II fibers,
and the absence of compensatory increases in other Ca 2+ handling proteins, coupled with the marked increase in contractile function required of the diaphragm muscle to support postnatal
respiration, can account for respiratory failure in term SERCA1-null mice.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Calcium-Transporting ATPases - deficiency</subject><subject>Calcium-Transporting ATPases - genetics</subject><subject>Calcium-Transporting ATPases - metabolism</subject><subject>Diaphragm - pathology</subject><subject>Diaphragm - physiology</subject><subject>Diaphragm - ultrastructure</subject><subject>Genes, Lethal</subject><subject>Genotype</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Phenotype</subject><subject>Respiratory Muscles - pathology</subject><subject>Respiratory Muscles - physiology</subject><subject>Respiratory Muscles - ultrastructure</subject><subject>Restriction Mapping</subject><subject>Sarcoplasmic Reticulum - enzymology</subject><subject>Sarcoplasmic Reticulum Calcium-Transporting ATPases</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkUtrGzEUhUVpady02y6LFqUklHH1sDKapXGd1OC0JXGhO6HHHY_CjDSRZij5SfmXncSG3M29cL9zzuIg9JGSOSXl4tudsfNrRjljkhHyCs0okbzggv59jWaEMFpUTMgT9C7nOzLNoqJv0QllQlwIRmfocafTHgZw-LvPaewHHwOONR4awMvdb7ak-AoC4HWw0fmwf37c6mTjGQQXz_tW585bfAODt2M7dnil2dcnqc6ANznWMXWY4rPb9c1qSc_xpuu1T3mK032T9L7Dl2Owz7E6uEmBtzA0usU-4J8Qgx6m-9pbeI_e1LrN8OG4T9Gfy_Vu9aPY_rrarJbbwrKKDQWU1GheS1o5y3nNrAQJptILZ0ohmTOOmKrSFIAYXlliQDhhrJHaSbFwC36Kvhx8-xTvR8iD6ny20LY6QByzKjktS0bYBM4PoE0x5wS16pPvdHpQlKinctRUjnopZxJ8OjqPpgP3gh_bmIDPB6Dx--afT6CMj7aBTrFSKioU5fyi5P8BpBWWlQ</recordid><startdate>20030411</startdate><enddate>20030411</enddate><creator>Pan, Yan</creator><creator>Zvaritch, Elena</creator><creator>Tupling, A Russ</creator><creator>Rice, William J</creator><creator>de Leon, Stella</creator><creator>Rudnicki, Michael</creator><creator>McKerlie, Colin</creator><creator>Banwell, Brenda L</creator><creator>MacLennan, David H</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030411</creationdate><title>Targeted Disruption of the ATP2A1 Gene Encoding the Sarco(endo)plasmic Reticulum Ca2+ ATPase Isoform 1 (SERCA1) Impairs Diaphragm Function and Is Lethal in Neonatal Mice</title><author>Pan, Yan ; Zvaritch, Elena ; Tupling, A Russ ; Rice, William J ; de Leon, Stella ; Rudnicki, Michael ; McKerlie, Colin ; Banwell, Brenda L ; MacLennan, David H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-e71ba3f819dc33f2c8e8eb9a4db7582dbd0b99a1ee0b39c0be5d5bcb8ad854d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Calcium-Transporting ATPases - deficiency</topic><topic>Calcium-Transporting ATPases - genetics</topic><topic>Calcium-Transporting ATPases - metabolism</topic><topic>Diaphragm - pathology</topic><topic>Diaphragm - physiology</topic><topic>Diaphragm - ultrastructure</topic><topic>Genes, Lethal</topic><topic>Genotype</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Phenotype</topic><topic>Respiratory Muscles - pathology</topic><topic>Respiratory Muscles - physiology</topic><topic>Respiratory Muscles - ultrastructure</topic><topic>Restriction Mapping</topic><topic>Sarcoplasmic Reticulum - enzymology</topic><topic>Sarcoplasmic Reticulum Calcium-Transporting ATPases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Yan</creatorcontrib><creatorcontrib>Zvaritch, Elena</creatorcontrib><creatorcontrib>Tupling, A Russ</creatorcontrib><creatorcontrib>Rice, William J</creatorcontrib><creatorcontrib>de Leon, Stella</creatorcontrib><creatorcontrib>Rudnicki, Michael</creatorcontrib><creatorcontrib>McKerlie, Colin</creatorcontrib><creatorcontrib>Banwell, Brenda L</creatorcontrib><creatorcontrib>MacLennan, David H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Yan</au><au>Zvaritch, Elena</au><au>Tupling, A Russ</au><au>Rice, William J</au><au>de Leon, Stella</au><au>Rudnicki, Michael</au><au>McKerlie, Colin</au><au>Banwell, Brenda L</au><au>MacLennan, David H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeted Disruption of the ATP2A1 Gene Encoding the Sarco(endo)plasmic Reticulum Ca2+ ATPase Isoform 1 (SERCA1) Impairs Diaphragm Function and Is Lethal in Neonatal Mice</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2003-04-11</date><risdate>2003</risdate><volume>278</volume><issue>15</issue><spage>13367</spage><epage>13375</epage><pages>13367-13375</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Mutations in the ATP2A1 gene, encoding isoform 1 of the sarco(endo)plasmic reticulum Ca 2+ -ATPase (SERCA1), are one cause of Brody disease, characterized in humans by exercise-induced contraction of fast twitch (type
II) skeletal muscle fibers. In an attempt to create a model for Brody disease, the mouse ATP2A1 gene was targeted to generate a SERCA1-null mutant mouse line. In contrast to humans, term SERCA1-null mice had progressive
cyanosis and gasping respiration and succumbed from respiratory failure shortly after birth. The percentage of affected homozygote
SERCA1 â/â mice was consistent with predicted Mendelian inheritance. A survey of multiple organs from 10-, 15-, and 18-day embryos revealed
no morphological abnormalities, but analysis of the lungs in term mice revealed diffuse congestion and epithelial hypercellularity
and studies of the diaphragm muscle revealed prominent hypercontracted regions in scattered fibers and increased fiber size
variability. The V
max of Ca 2+ transport activity in mutant diaphragm and skeletal muscle was reduced by 80% compared with wild-type muscle, and the contractile
response to electrical stimulation under physiological conditions was reduced dramatically in mutant diaphragm muscle. No
compensatory responses were detected in analysis of mRNAs encoding other Ca 2+ handling proteins or of protein levels. Expression of ATP2A1 is largely restricted to type II fibers, which predominate in normal mouse diaphragm. The absence of SERCA1 in type II fibers,
and the absence of compensatory increases in other Ca 2+ handling proteins, coupled with the marked increase in contractile function required of the diaphragm muscle to support postnatal
respiration, can account for respiratory failure in term SERCA1-null mice.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>12556521</pmid><doi>10.1074/jbc.M213228200</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2003-04, Vol.278 (15), p.13367-13375 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_73177202 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Animals Animals, Newborn Calcium-Transporting ATPases - deficiency Calcium-Transporting ATPases - genetics Calcium-Transporting ATPases - metabolism Diaphragm - pathology Diaphragm - physiology Diaphragm - ultrastructure Genes, Lethal Genotype Humans Kinetics Mice Mice, Transgenic Phenotype Respiratory Muscles - pathology Respiratory Muscles - physiology Respiratory Muscles - ultrastructure Restriction Mapping Sarcoplasmic Reticulum - enzymology Sarcoplasmic Reticulum Calcium-Transporting ATPases |
title | Targeted Disruption of the ATP2A1 Gene Encoding the Sarco(endo)plasmic Reticulum Ca2+ ATPase Isoform 1 (SERCA1) Impairs Diaphragm Function and Is Lethal in Neonatal Mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T09%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeted%20Disruption%20of%20the%20ATP2A1%20Gene%20Encoding%20the%20Sarco(endo)plasmic%20Reticulum%20Ca2+%20ATPase%20Isoform%201%20(SERCA1)%20Impairs%20Diaphragm%20Function%20and%20Is%20Lethal%20in%20Neonatal%20Mice&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Pan,%20Yan&rft.date=2003-04-11&rft.volume=278&rft.issue=15&rft.spage=13367&rft.epage=13375&rft.pages=13367-13375&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M213228200&rft_dat=%3Cproquest_cross%3E73177202%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73177202&rft_id=info:pmid/12556521&rfr_iscdi=true |