Improved sensitivity of biomolecular interaction analysis mass spectrometry for the identification of interacting molecules
Biological functions of most macromolecules depend on their ability to interact with other molecules and a great challenge is the complete description of the protein interaction networks. Biomolecular interaction analysis (BIA) is an optical technology that uses the surface plasmon resonance phenome...
Gespeichert in:
Veröffentlicht in: | Proteomics (Weinheim) 2003-04, Vol.3 (4), p.402-412 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 412 |
---|---|
container_issue | 4 |
container_start_page | 402 |
container_title | Proteomics (Weinheim) |
container_volume | 3 |
creator | Lopez, Frédéric Pichereaux, Carole Burlet-Schiltz, Odile Pradayrol, Lucien Monsarrat, Bernard Estève, Jean-Pierre |
description | Biological functions of most macromolecules depend on their ability to interact with other molecules and a great challenge is the complete description of the protein interaction networks. Biomolecular interaction analysis (BIA) is an optical technology that uses the surface plasmon resonance phenomenon for characterizing macromolecular interactions between an analyte in solution and its ligand immobilized on a sensor chip. Further identification of interacting proteins can be achieved by combining this nondestructive method to mass spectrometry (MS). The BIA‐MS approach represents a promising tool in proteomics for the characterization of protein/protein interactions. In this study, we report on the improved sensitivity in the identification of an unknown protein bound to a known ligand by a rapid and simple BIA‐MS approach. We took advantage of a new automatic and very reproducible microelution procedure available on BIACORE 3000 instruments, called “microrecovery”, to elute the bound protein from the sensor chip. Protein identification was then achieved after tryptic digestion by matrix‐assisted laser desorption/ionization‐time of flight mass mapping and database search. The strategy was succesfully applied to the model protein SHP2 tyrosine phosphatase interacting with an immunoreceptor tyrosine‐based inhibitory motif sequence of the sst2 somatostatin receptor. Optimization of the BIA‐MS approach allowed the unambiguous identification of 10–20 fmol of the protein specifically trapped from a complex mixture of cytosolic extracts. |
doi_str_mv | 10.1002/pmic.200390055 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73163750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73163750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4095-e81d431db497b074f314de263e62514852b8591ea33da3a946cfe78f104c1dff3</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi0EoqVw5Yh8gVu2dmzH8RFWsKzUAkJFHC3HGYMhH4vHW4j650nZaMutJ8_heZ_xvIQ852zFGSvPd330q5IxYRhT6gE55RVXhakr_vA4K3FCniD-YIzr2ujH5ISXVa0rVp-Sm22_S-M1tBRhwJjjdcwTHQNt4tiPHfh95xKNQ4bkfI7jQN3gugkj0t4hUtyBz2nsIaeJhjHR_B1obGHIMUTv_iVm21EwfKOLFvApeRRch_Bsec_Il3dvr9bvi4uPm-369UXhJTOqgJq3UvC2kUY3TMsguGyhrARUpeKyVmVTK8PBCdE64YysfABdB86k520I4oy8OnjnS3_tAbPtI3roOjfAuEerBa-EVmwGVwfQpxExQbC7FHuXJsuZva3b3tZtj3XPgReLed_00N7hS78z8HIBHHrXheQGH_GOk7pkXJUzZw7c79jBdM9a--lyu_7_E8UhGzHDn2PWpZ-20vNd9uuHjVXCbD5fvdHWiL8RdqvI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73163750</pqid></control><display><type>article</type><title>Improved sensitivity of biomolecular interaction analysis mass spectrometry for the identification of interacting molecules</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Lopez, Frédéric ; Pichereaux, Carole ; Burlet-Schiltz, Odile ; Pradayrol, Lucien ; Monsarrat, Bernard ; Estève, Jean-Pierre</creator><creatorcontrib>Lopez, Frédéric ; Pichereaux, Carole ; Burlet-Schiltz, Odile ; Pradayrol, Lucien ; Monsarrat, Bernard ; Estève, Jean-Pierre</creatorcontrib><description>Biological functions of most macromolecules depend on their ability to interact with other molecules and a great challenge is the complete description of the protein interaction networks. Biomolecular interaction analysis (BIA) is an optical technology that uses the surface plasmon resonance phenomenon for characterizing macromolecular interactions between an analyte in solution and its ligand immobilized on a sensor chip. Further identification of interacting proteins can be achieved by combining this nondestructive method to mass spectrometry (MS). The BIA‐MS approach represents a promising tool in proteomics for the characterization of protein/protein interactions. In this study, we report on the improved sensitivity in the identification of an unknown protein bound to a known ligand by a rapid and simple BIA‐MS approach. We took advantage of a new automatic and very reproducible microelution procedure available on BIACORE 3000 instruments, called “microrecovery”, to elute the bound protein from the sensor chip. Protein identification was then achieved after tryptic digestion by matrix‐assisted laser desorption/ionization‐time of flight mass mapping and database search. The strategy was succesfully applied to the model protein SHP2 tyrosine phosphatase interacting with an immunoreceptor tyrosine‐based inhibitory motif sequence of the sst2 somatostatin receptor. Optimization of the BIA‐MS approach allowed the unambiguous identification of 10–20 fmol of the protein specifically trapped from a complex mixture of cytosolic extracts.</description><identifier>ISSN: 1615-9853</identifier><identifier>EISSN: 1615-9861</identifier><identifier>DOI: 10.1002/pmic.200390055</identifier><identifier>PMID: 12687608</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Amino Acid Sequence ; Analytical, structural and metabolic biochemistry ; Animals ; Biological and medical sciences ; Biomolecular interaction analysis ; CHO Cells ; Chromatography, Affinity ; Cricetinae ; Cytosol - chemistry ; Electron Spin Resonance Spectroscopy ; Fundamental and applied biological sciences. Psychology ; General aspects, investigation methods ; Immunoreceptor tyrosine-based inhibitory motif ; Intracellular Signaling Peptides and Proteins ; Matrix-assisted laser desorption/ionization-time of flight mass spectrometry ; Mice ; Molecular Sequence Data ; Peptide Fragments - chemistry ; Peptide Fragments - metabolism ; Protein Binding ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 ; Protein Tyrosine Phosphatases - analysis ; Protein Tyrosine Phosphatases - chemistry ; Protein Tyrosine Phosphatases - metabolism ; Proteins ; Receptors, Somatostatin - chemistry ; Receptors, Somatostatin - metabolism ; Recombinant Fusion Proteins - analysis ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - metabolism ; Reproducibility of Results ; Sensitivity and Specificity ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods ; Src homology type 2 ; Surface plasmon resonance ; Tyrosine phosphatase</subject><ispartof>Proteomics (Weinheim), 2003-04, Vol.3 (4), p.402-412</ispartof><rights>2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4095-e81d431db497b074f314de263e62514852b8591ea33da3a946cfe78f104c1dff3</citedby><cites>FETCH-LOGICAL-c4095-e81d431db497b074f314de263e62514852b8591ea33da3a946cfe78f104c1dff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpmic.200390055$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpmic.200390055$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14720152$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12687608$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopez, Frédéric</creatorcontrib><creatorcontrib>Pichereaux, Carole</creatorcontrib><creatorcontrib>Burlet-Schiltz, Odile</creatorcontrib><creatorcontrib>Pradayrol, Lucien</creatorcontrib><creatorcontrib>Monsarrat, Bernard</creatorcontrib><creatorcontrib>Estève, Jean-Pierre</creatorcontrib><title>Improved sensitivity of biomolecular interaction analysis mass spectrometry for the identification of interacting molecules</title><title>Proteomics (Weinheim)</title><addtitle>Proteomics</addtitle><description>Biological functions of most macromolecules depend on their ability to interact with other molecules and a great challenge is the complete description of the protein interaction networks. Biomolecular interaction analysis (BIA) is an optical technology that uses the surface plasmon resonance phenomenon for characterizing macromolecular interactions between an analyte in solution and its ligand immobilized on a sensor chip. Further identification of interacting proteins can be achieved by combining this nondestructive method to mass spectrometry (MS). The BIA‐MS approach represents a promising tool in proteomics for the characterization of protein/protein interactions. In this study, we report on the improved sensitivity in the identification of an unknown protein bound to a known ligand by a rapid and simple BIA‐MS approach. We took advantage of a new automatic and very reproducible microelution procedure available on BIACORE 3000 instruments, called “microrecovery”, to elute the bound protein from the sensor chip. Protein identification was then achieved after tryptic digestion by matrix‐assisted laser desorption/ionization‐time of flight mass mapping and database search. The strategy was succesfully applied to the model protein SHP2 tyrosine phosphatase interacting with an immunoreceptor tyrosine‐based inhibitory motif sequence of the sst2 somatostatin receptor. Optimization of the BIA‐MS approach allowed the unambiguous identification of 10–20 fmol of the protein specifically trapped from a complex mixture of cytosolic extracts.</description><subject>Amino Acid Sequence</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biomolecular interaction analysis</subject><subject>CHO Cells</subject><subject>Chromatography, Affinity</subject><subject>Cricetinae</subject><subject>Cytosol - chemistry</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects, investigation methods</subject><subject>Immunoreceptor tyrosine-based inhibitory motif</subject><subject>Intracellular Signaling Peptides and Proteins</subject><subject>Matrix-assisted laser desorption/ionization-time of flight mass spectrometry</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - metabolism</subject><subject>Protein Binding</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 11</subject><subject>Protein Tyrosine Phosphatases - analysis</subject><subject>Protein Tyrosine Phosphatases - chemistry</subject><subject>Protein Tyrosine Phosphatases - metabolism</subject><subject>Proteins</subject><subject>Receptors, Somatostatin - chemistry</subject><subject>Receptors, Somatostatin - metabolism</subject><subject>Recombinant Fusion Proteins - analysis</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods</subject><subject>Src homology type 2</subject><subject>Surface plasmon resonance</subject><subject>Tyrosine phosphatase</subject><issn>1615-9853</issn><issn>1615-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v1DAQhi0EoqVw5Yh8gVu2dmzH8RFWsKzUAkJFHC3HGYMhH4vHW4j650nZaMutJ8_heZ_xvIQ852zFGSvPd330q5IxYRhT6gE55RVXhakr_vA4K3FCniD-YIzr2ujH5ISXVa0rVp-Sm22_S-M1tBRhwJjjdcwTHQNt4tiPHfh95xKNQ4bkfI7jQN3gugkj0t4hUtyBz2nsIaeJhjHR_B1obGHIMUTv_iVm21EwfKOLFvApeRRch_Bsec_Il3dvr9bvi4uPm-369UXhJTOqgJq3UvC2kUY3TMsguGyhrARUpeKyVmVTK8PBCdE64YysfABdB86k520I4oy8OnjnS3_tAbPtI3roOjfAuEerBa-EVmwGVwfQpxExQbC7FHuXJsuZva3b3tZtj3XPgReLed_00N7hS78z8HIBHHrXheQGH_GOk7pkXJUzZw7c79jBdM9a--lyu_7_E8UhGzHDn2PWpZ-20vNd9uuHjVXCbD5fvdHWiL8RdqvI</recordid><startdate>200304</startdate><enddate>200304</enddate><creator>Lopez, Frédéric</creator><creator>Pichereaux, Carole</creator><creator>Burlet-Schiltz, Odile</creator><creator>Pradayrol, Lucien</creator><creator>Monsarrat, Bernard</creator><creator>Estève, Jean-Pierre</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200304</creationdate><title>Improved sensitivity of biomolecular interaction analysis mass spectrometry for the identification of interacting molecules</title><author>Lopez, Frédéric ; Pichereaux, Carole ; Burlet-Schiltz, Odile ; Pradayrol, Lucien ; Monsarrat, Bernard ; Estève, Jean-Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4095-e81d431db497b074f314de263e62514852b8591ea33da3a946cfe78f104c1dff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Amino Acid Sequence</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biomolecular interaction analysis</topic><topic>CHO Cells</topic><topic>Chromatography, Affinity</topic><topic>Cricetinae</topic><topic>Cytosol - chemistry</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects, investigation methods</topic><topic>Immunoreceptor tyrosine-based inhibitory motif</topic><topic>Intracellular Signaling Peptides and Proteins</topic><topic>Matrix-assisted laser desorption/ionization-time of flight mass spectrometry</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - metabolism</topic><topic>Protein Binding</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 11</topic><topic>Protein Tyrosine Phosphatases - analysis</topic><topic>Protein Tyrosine Phosphatases - chemistry</topic><topic>Protein Tyrosine Phosphatases - metabolism</topic><topic>Proteins</topic><topic>Receptors, Somatostatin - chemistry</topic><topic>Receptors, Somatostatin - metabolism</topic><topic>Recombinant Fusion Proteins - analysis</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods</topic><topic>Src homology type 2</topic><topic>Surface plasmon resonance</topic><topic>Tyrosine phosphatase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez, Frédéric</creatorcontrib><creatorcontrib>Pichereaux, Carole</creatorcontrib><creatorcontrib>Burlet-Schiltz, Odile</creatorcontrib><creatorcontrib>Pradayrol, Lucien</creatorcontrib><creatorcontrib>Monsarrat, Bernard</creatorcontrib><creatorcontrib>Estève, Jean-Pierre</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Proteomics (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez, Frédéric</au><au>Pichereaux, Carole</au><au>Burlet-Schiltz, Odile</au><au>Pradayrol, Lucien</au><au>Monsarrat, Bernard</au><au>Estève, Jean-Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved sensitivity of biomolecular interaction analysis mass spectrometry for the identification of interacting molecules</atitle><jtitle>Proteomics (Weinheim)</jtitle><addtitle>Proteomics</addtitle><date>2003-04</date><risdate>2003</risdate><volume>3</volume><issue>4</issue><spage>402</spage><epage>412</epage><pages>402-412</pages><issn>1615-9853</issn><eissn>1615-9861</eissn><abstract>Biological functions of most macromolecules depend on their ability to interact with other molecules and a great challenge is the complete description of the protein interaction networks. Biomolecular interaction analysis (BIA) is an optical technology that uses the surface plasmon resonance phenomenon for characterizing macromolecular interactions between an analyte in solution and its ligand immobilized on a sensor chip. Further identification of interacting proteins can be achieved by combining this nondestructive method to mass spectrometry (MS). The BIA‐MS approach represents a promising tool in proteomics for the characterization of protein/protein interactions. In this study, we report on the improved sensitivity in the identification of an unknown protein bound to a known ligand by a rapid and simple BIA‐MS approach. We took advantage of a new automatic and very reproducible microelution procedure available on BIACORE 3000 instruments, called “microrecovery”, to elute the bound protein from the sensor chip. Protein identification was then achieved after tryptic digestion by matrix‐assisted laser desorption/ionization‐time of flight mass mapping and database search. The strategy was succesfully applied to the model protein SHP2 tyrosine phosphatase interacting with an immunoreceptor tyrosine‐based inhibitory motif sequence of the sst2 somatostatin receptor. Optimization of the BIA‐MS approach allowed the unambiguous identification of 10–20 fmol of the protein specifically trapped from a complex mixture of cytosolic extracts.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>12687608</pmid><doi>10.1002/pmic.200390055</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-9853 |
ispartof | Proteomics (Weinheim), 2003-04, Vol.3 (4), p.402-412 |
issn | 1615-9853 1615-9861 |
language | eng |
recordid | cdi_proquest_miscellaneous_73163750 |
source | MEDLINE; Wiley Journals |
subjects | Amino Acid Sequence Analytical, structural and metabolic biochemistry Animals Biological and medical sciences Biomolecular interaction analysis CHO Cells Chromatography, Affinity Cricetinae Cytosol - chemistry Electron Spin Resonance Spectroscopy Fundamental and applied biological sciences. Psychology General aspects, investigation methods Immunoreceptor tyrosine-based inhibitory motif Intracellular Signaling Peptides and Proteins Matrix-assisted laser desorption/ionization-time of flight mass spectrometry Mice Molecular Sequence Data Peptide Fragments - chemistry Peptide Fragments - metabolism Protein Binding Protein Tyrosine Phosphatase, Non-Receptor Type 11 Protein Tyrosine Phosphatases - analysis Protein Tyrosine Phosphatases - chemistry Protein Tyrosine Phosphatases - metabolism Proteins Receptors, Somatostatin - chemistry Receptors, Somatostatin - metabolism Recombinant Fusion Proteins - analysis Recombinant Fusion Proteins - chemistry Recombinant Fusion Proteins - metabolism Reproducibility of Results Sensitivity and Specificity Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods Src homology type 2 Surface plasmon resonance Tyrosine phosphatase |
title | Improved sensitivity of biomolecular interaction analysis mass spectrometry for the identification of interacting molecules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A39%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20sensitivity%20of%20biomolecular%20interaction%20analysis%20mass%20spectrometry%20for%20the%20identification%20of%20interacting%20molecules&rft.jtitle=Proteomics%20(Weinheim)&rft.au=Lopez,%20Fr%C3%A9d%C3%A9ric&rft.date=2003-04&rft.volume=3&rft.issue=4&rft.spage=402&rft.epage=412&rft.pages=402-412&rft.issn=1615-9853&rft.eissn=1615-9861&rft_id=info:doi/10.1002/pmic.200390055&rft_dat=%3Cproquest_cross%3E73163750%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73163750&rft_id=info:pmid/12687608&rfr_iscdi=true |