Combined atomic–scale modelling and experimental studies of nucleation in the solid state
The process of solid-state nucleation in highly supersaturated solid solutions has been investigated on the atomic scale by a combination of three-dimensional atom probe analysis and atomistic modelling using dynamical Ising models. In binary Cu-Co alloys, a simple atom-exchange model with a single...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2003-03, Vol.361 (1804), p.463-477 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 477 |
---|---|
container_issue | 1804 |
container_start_page | 463 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 361 |
creator | Cerezo, A. Hirosawa, S. Rozdilsky, I. Smith, G. D. W. |
description | The process of solid-state nucleation in highly supersaturated solid solutions has been investigated on the atomic scale by a combination of three-dimensional atom probe analysis and atomistic modelling using dynamical Ising models. In binary Cu-Co alloys, a simple atom-exchange model with a single thermodynamic parameter derived from phase-diagram data was able to reproduce the atomic-scale microstructures observed in the atom probe, and also match the measured peak precipitate density. Modelling solute effects in complex copper-bearing steels required a more sophisticated model based on a vacancy-hopping mechanism and a larger number of thermodynamic and kinetic parameters derived from independent experimental data and theoretical calculations. The model gave an excellent match to the experimentally observed microstructures, and it reproduced features such as the clustering of Ni and Mn before the precipitation of Cu. The model also allowed time-dependent behaviour to be investigated, and it showed that solute clustering of Ni and Mn occurs during the cooling of the alloy. These clusters then act as heterogeneous nucleation sites for the formation of copper precipitates. Understanding such complex solute interaction effects through combined experiment and modelling is an essential step to controlling nucleation and hence the fine-scale microstructures in advanced engineering alloys. |
doi_str_mv | 10.1098/rsta.2002.1139 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_73146068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3559184</jstor_id><sourcerecordid>3559184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c599t-ca03751e75dd007a98a307c5341794bbf30c0686d3d3f042d1d0443e1205cd883</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEoj-wZYVQVuwy2LHjxCtUjaBFGkAqBY3EwvLYNx0PSZzaDnRY8Q68IU-CMxkVKkRXcXS_e869x06SJxjNMOLVC-eDnOUI5TOMCb-XHGJa4iznLL8fz4TRrEBkeZAceb9BCGNW5A-TA5wzllPKD5PPc9uuTAc6lcG2Rv368dMr2UDaWg1NY7rLVHY6hesenGmhC7JJfRi0AZ_aOu0G1YAMxnap6dKwhtTbxuiIyACPkge1bDw83n-Pk4-vX13Mz7LF-9M385NFpgrOQ6YkImWBoSy0RqiUvJIElaogFJecrlY1QQqximmiSY1orrFGlBLAOSqUripynDyfdHtnrwbwQbTGqzi97MAOXpQEUxYVIjibQOWs9w5q0celpNsKjMQYpxjjFGOcYowzNjzbKw-rFvQffJ9fBMgEOLuNK1plIGzFxg6ui7__l_V3dZ1_uDjBnLOvhGGDK0QFqghGZU4oFd9Nv5MbAREBYbwfQOyw2zb_uj6dXDc-WHezCykKjisay9lUNj7A9U1Zui-ClfGCxKeKisXy3fny7eJMjPzLiV-by_U340Dc2mZnrmwX4pvZzbmbkDIi6qFpRK_rqIDuVLDbPmr83Ut-A_L36PY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73146068</pqid></control><display><type>article</type><title>Combined atomic–scale modelling and experimental studies of nucleation in the solid state</title><source>MEDLINE</source><source>JSTOR Mathematics & Statistics</source><source>Free Full-Text Journals in Chemistry</source><creator>Cerezo, A. ; Hirosawa, S. ; Rozdilsky, I. ; Smith, G. D. W.</creator><contributor>Kelton, K. F. ; Herlach, D. M. ; Greer, A. L. ; Greenwood, G. W. ; Greer, A. L. ; Herlach, D. M. ; Greenwood, G. W. ; Kelton, K. F.</contributor><creatorcontrib>Cerezo, A. ; Hirosawa, S. ; Rozdilsky, I. ; Smith, G. D. W. ; Kelton, K. F. ; Herlach, D. M. ; Greer, A. L. ; Greenwood, G. W. ; Greer, A. L. ; Herlach, D. M. ; Greenwood, G. W. ; Kelton, K. F.</creatorcontrib><description>The process of solid-state nucleation in highly supersaturated solid solutions has been investigated on the atomic scale by a combination of three-dimensional atom probe analysis and atomistic modelling using dynamical Ising models. In binary Cu-Co alloys, a simple atom-exchange model with a single thermodynamic parameter derived from phase-diagram data was able to reproduce the atomic-scale microstructures observed in the atom probe, and also match the measured peak precipitate density. Modelling solute effects in complex copper-bearing steels required a more sophisticated model based on a vacancy-hopping mechanism and a larger number of thermodynamic and kinetic parameters derived from independent experimental data and theoretical calculations. The model gave an excellent match to the experimentally observed microstructures, and it reproduced features such as the clustering of Ni and Mn before the precipitation of Cu. The model also allowed time-dependent behaviour to be investigated, and it showed that solute clustering of Ni and Mn occurs during the cooling of the alloy. These clusters then act as heterogeneous nucleation sites for the formation of copper precipitates. Understanding such complex solute interaction effects through combined experiment and modelling is an essential step to controlling nucleation and hence the fine-scale microstructures in advanced engineering alloys.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2002.1139</identifier><identifier>PMID: 12662449</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Alloys ; Atom Probe ; Atoms ; Biophysical Phenomena ; Biophysics ; Cobalt - chemistry ; Copper - chemistry ; Ising model ; Manganese - chemistry ; Modeling ; Monte Carlo Method ; Monte Carlo Modelling ; Nickel - chemistry ; Nucleation ; Parametric models ; Precipitates ; Precipitation ; Simulations ; Solutes ; Steels ; Thermodynamics ; Time Factors</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2003-03, Vol.361 (1804), p.463-477</ispartof><rights>Copyright 2003 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c599t-ca03751e75dd007a98a307c5341794bbf30c0686d3d3f042d1d0443e1205cd883</citedby><cites>FETCH-LOGICAL-c599t-ca03751e75dd007a98a307c5341794bbf30c0686d3d3f042d1d0443e1205cd883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3559184$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3559184$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,832,27924,27925,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12662449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kelton, K. F.</contributor><contributor>Herlach, D. M.</contributor><contributor>Greer, A. L.</contributor><contributor>Greenwood, G. W.</contributor><contributor>Greer, A. L.</contributor><contributor>Herlach, D. M.</contributor><contributor>Greenwood, G. W.</contributor><contributor>Kelton, K. F.</contributor><creatorcontrib>Cerezo, A.</creatorcontrib><creatorcontrib>Hirosawa, S.</creatorcontrib><creatorcontrib>Rozdilsky, I.</creatorcontrib><creatorcontrib>Smith, G. D. W.</creatorcontrib><title>Combined atomic–scale modelling and experimental studies of nucleation in the solid state</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><description>The process of solid-state nucleation in highly supersaturated solid solutions has been investigated on the atomic scale by a combination of three-dimensional atom probe analysis and atomistic modelling using dynamical Ising models. In binary Cu-Co alloys, a simple atom-exchange model with a single thermodynamic parameter derived from phase-diagram data was able to reproduce the atomic-scale microstructures observed in the atom probe, and also match the measured peak precipitate density. Modelling solute effects in complex copper-bearing steels required a more sophisticated model based on a vacancy-hopping mechanism and a larger number of thermodynamic and kinetic parameters derived from independent experimental data and theoretical calculations. The model gave an excellent match to the experimentally observed microstructures, and it reproduced features such as the clustering of Ni and Mn before the precipitation of Cu. The model also allowed time-dependent behaviour to be investigated, and it showed that solute clustering of Ni and Mn occurs during the cooling of the alloy. These clusters then act as heterogeneous nucleation sites for the formation of copper precipitates. Understanding such complex solute interaction effects through combined experiment and modelling is an essential step to controlling nucleation and hence the fine-scale microstructures in advanced engineering alloys.</description><subject>Alloys</subject><subject>Atom Probe</subject><subject>Atoms</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Cobalt - chemistry</subject><subject>Copper - chemistry</subject><subject>Ising model</subject><subject>Manganese - chemistry</subject><subject>Modeling</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo Modelling</subject><subject>Nickel - chemistry</subject><subject>Nucleation</subject><subject>Parametric models</subject><subject>Precipitates</subject><subject>Precipitation</subject><subject>Simulations</subject><subject>Solutes</subject><subject>Steels</subject><subject>Thermodynamics</subject><subject>Time Factors</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9ks1u1DAUhSMEoj-wZYVQVuwy2LHjxCtUjaBFGkAqBY3EwvLYNx0PSZzaDnRY8Q68IU-CMxkVKkRXcXS_e869x06SJxjNMOLVC-eDnOUI5TOMCb-XHGJa4iznLL8fz4TRrEBkeZAceb9BCGNW5A-TA5wzllPKD5PPc9uuTAc6lcG2Rv368dMr2UDaWg1NY7rLVHY6hesenGmhC7JJfRi0AZ_aOu0G1YAMxnap6dKwhtTbxuiIyACPkge1bDw83n-Pk4-vX13Mz7LF-9M385NFpgrOQ6YkImWBoSy0RqiUvJIElaogFJecrlY1QQqximmiSY1orrFGlBLAOSqUripynDyfdHtnrwbwQbTGqzi97MAOXpQEUxYVIjibQOWs9w5q0celpNsKjMQYpxjjFGOcYowzNjzbKw-rFvQffJ9fBMgEOLuNK1plIGzFxg6ui7__l_V3dZ1_uDjBnLOvhGGDK0QFqghGZU4oFd9Nv5MbAREBYbwfQOyw2zb_uj6dXDc-WHezCykKjisay9lUNj7A9U1Zui-ClfGCxKeKisXy3fny7eJMjPzLiV-by_U340Dc2mZnrmwX4pvZzbmbkDIi6qFpRK_rqIDuVLDbPmr83Ut-A_L36PY</recordid><startdate>20030315</startdate><enddate>20030315</enddate><creator>Cerezo, A.</creator><creator>Hirosawa, S.</creator><creator>Rozdilsky, I.</creator><creator>Smith, G. D. W.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030315</creationdate><title>Combined atomic–scale modelling and experimental studies of nucleation in the solid state</title><author>Cerezo, A. ; Hirosawa, S. ; Rozdilsky, I. ; Smith, G. D. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c599t-ca03751e75dd007a98a307c5341794bbf30c0686d3d3f042d1d0443e1205cd883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Alloys</topic><topic>Atom Probe</topic><topic>Atoms</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Cobalt - chemistry</topic><topic>Copper - chemistry</topic><topic>Ising model</topic><topic>Manganese - chemistry</topic><topic>Modeling</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo Modelling</topic><topic>Nickel - chemistry</topic><topic>Nucleation</topic><topic>Parametric models</topic><topic>Precipitates</topic><topic>Precipitation</topic><topic>Simulations</topic><topic>Solutes</topic><topic>Steels</topic><topic>Thermodynamics</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cerezo, A.</creatorcontrib><creatorcontrib>Hirosawa, S.</creatorcontrib><creatorcontrib>Rozdilsky, I.</creatorcontrib><creatorcontrib>Smith, G. D. W.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cerezo, A.</au><au>Hirosawa, S.</au><au>Rozdilsky, I.</au><au>Smith, G. D. W.</au><au>Kelton, K. F.</au><au>Herlach, D. M.</au><au>Greer, A. L.</au><au>Greenwood, G. W.</au><au>Greer, A. L.</au><au>Herlach, D. M.</au><au>Greenwood, G. W.</au><au>Kelton, K. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined atomic–scale modelling and experimental studies of nucleation in the solid state</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><date>2003-03-15</date><risdate>2003</risdate><volume>361</volume><issue>1804</issue><spage>463</spage><epage>477</epage><pages>463-477</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>The process of solid-state nucleation in highly supersaturated solid solutions has been investigated on the atomic scale by a combination of three-dimensional atom probe analysis and atomistic modelling using dynamical Ising models. In binary Cu-Co alloys, a simple atom-exchange model with a single thermodynamic parameter derived from phase-diagram data was able to reproduce the atomic-scale microstructures observed in the atom probe, and also match the measured peak precipitate density. Modelling solute effects in complex copper-bearing steels required a more sophisticated model based on a vacancy-hopping mechanism and a larger number of thermodynamic and kinetic parameters derived from independent experimental data and theoretical calculations. The model gave an excellent match to the experimentally observed microstructures, and it reproduced features such as the clustering of Ni and Mn before the precipitation of Cu. The model also allowed time-dependent behaviour to be investigated, and it showed that solute clustering of Ni and Mn occurs during the cooling of the alloy. These clusters then act as heterogeneous nucleation sites for the formation of copper precipitates. Understanding such complex solute interaction effects through combined experiment and modelling is an essential step to controlling nucleation and hence the fine-scale microstructures in advanced engineering alloys.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>12662449</pmid><doi>10.1098/rsta.2002.1139</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2003-03, Vol.361 (1804), p.463-477 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_proquest_miscellaneous_73146068 |
source | MEDLINE; JSTOR Mathematics & Statistics; Free Full-Text Journals in Chemistry |
subjects | Alloys Atom Probe Atoms Biophysical Phenomena Biophysics Cobalt - chemistry Copper - chemistry Ising model Manganese - chemistry Modeling Monte Carlo Method Monte Carlo Modelling Nickel - chemistry Nucleation Parametric models Precipitates Precipitation Simulations Solutes Steels Thermodynamics Time Factors |
title | Combined atomic–scale modelling and experimental studies of nucleation in the solid state |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20atomic%E2%80%93scale%20modelling%20and%20experimental%20studies%20of%20nucleation%20in%20the%20solid%20state&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Cerezo,%20A.&rft.date=2003-03-15&rft.volume=361&rft.issue=1804&rft.spage=463&rft.epage=477&rft.pages=463-477&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2002.1139&rft_dat=%3Cjstor_proqu%3E3559184%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73146068&rft_id=info:pmid/12662449&rft_jstor_id=3559184&rfr_iscdi=true |