Combined atomic–scale modelling and experimental studies of nucleation in the solid state

The process of solid-state nucleation in highly supersaturated solid solutions has been investigated on the atomic scale by a combination of three-dimensional atom probe analysis and atomistic modelling using dynamical Ising models. In binary Cu-Co alloys, a simple atom-exchange model with a single...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2003-03, Vol.361 (1804), p.463-477
Hauptverfasser: Cerezo, A., Hirosawa, S., Rozdilsky, I., Smith, G. D. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 477
container_issue 1804
container_start_page 463
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 361
creator Cerezo, A.
Hirosawa, S.
Rozdilsky, I.
Smith, G. D. W.
description The process of solid-state nucleation in highly supersaturated solid solutions has been investigated on the atomic scale by a combination of three-dimensional atom probe analysis and atomistic modelling using dynamical Ising models. In binary Cu-Co alloys, a simple atom-exchange model with a single thermodynamic parameter derived from phase-diagram data was able to reproduce the atomic-scale microstructures observed in the atom probe, and also match the measured peak precipitate density. Modelling solute effects in complex copper-bearing steels required a more sophisticated model based on a vacancy-hopping mechanism and a larger number of thermodynamic and kinetic parameters derived from independent experimental data and theoretical calculations. The model gave an excellent match to the experimentally observed microstructures, and it reproduced features such as the clustering of Ni and Mn before the precipitation of Cu. The model also allowed time-dependent behaviour to be investigated, and it showed that solute clustering of Ni and Mn occurs during the cooling of the alloy. These clusters then act as heterogeneous nucleation sites for the formation of copper precipitates. Understanding such complex solute interaction effects through combined experiment and modelling is an essential step to controlling nucleation and hence the fine-scale microstructures in advanced engineering alloys.
doi_str_mv 10.1098/rsta.2002.1139
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_73146068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3559184</jstor_id><sourcerecordid>3559184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c599t-ca03751e75dd007a98a307c5341794bbf30c0686d3d3f042d1d0443e1205cd883</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEoj-wZYVQVuwy2LHjxCtUjaBFGkAqBY3EwvLYNx0PSZzaDnRY8Q68IU-CMxkVKkRXcXS_e869x06SJxjNMOLVC-eDnOUI5TOMCb-XHGJa4iznLL8fz4TRrEBkeZAceb9BCGNW5A-TA5wzllPKD5PPc9uuTAc6lcG2Rv368dMr2UDaWg1NY7rLVHY6hesenGmhC7JJfRi0AZ_aOu0G1YAMxnap6dKwhtTbxuiIyACPkge1bDw83n-Pk4-vX13Mz7LF-9M385NFpgrOQ6YkImWBoSy0RqiUvJIElaogFJecrlY1QQqximmiSY1orrFGlBLAOSqUripynDyfdHtnrwbwQbTGqzi97MAOXpQEUxYVIjibQOWs9w5q0celpNsKjMQYpxjjFGOcYowzNjzbKw-rFvQffJ9fBMgEOLuNK1plIGzFxg6ui7__l_V3dZ1_uDjBnLOvhGGDK0QFqghGZU4oFd9Nv5MbAREBYbwfQOyw2zb_uj6dXDc-WHezCykKjisay9lUNj7A9U1Zui-ClfGCxKeKisXy3fny7eJMjPzLiV-by_U340Dc2mZnrmwX4pvZzbmbkDIi6qFpRK_rqIDuVLDbPmr83Ut-A_L36PY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73146068</pqid></control><display><type>article</type><title>Combined atomic–scale modelling and experimental studies of nucleation in the solid state</title><source>MEDLINE</source><source>JSTOR Mathematics &amp; Statistics</source><source>Free Full-Text Journals in Chemistry</source><creator>Cerezo, A. ; Hirosawa, S. ; Rozdilsky, I. ; Smith, G. D. W.</creator><contributor>Kelton, K. F. ; Herlach, D. M. ; Greer, A. L. ; Greenwood, G. W. ; Greer, A. L. ; Herlach, D. M. ; Greenwood, G. W. ; Kelton, K. F.</contributor><creatorcontrib>Cerezo, A. ; Hirosawa, S. ; Rozdilsky, I. ; Smith, G. D. W. ; Kelton, K. F. ; Herlach, D. M. ; Greer, A. L. ; Greenwood, G. W. ; Greer, A. L. ; Herlach, D. M. ; Greenwood, G. W. ; Kelton, K. F.</creatorcontrib><description>The process of solid-state nucleation in highly supersaturated solid solutions has been investigated on the atomic scale by a combination of three-dimensional atom probe analysis and atomistic modelling using dynamical Ising models. In binary Cu-Co alloys, a simple atom-exchange model with a single thermodynamic parameter derived from phase-diagram data was able to reproduce the atomic-scale microstructures observed in the atom probe, and also match the measured peak precipitate density. Modelling solute effects in complex copper-bearing steels required a more sophisticated model based on a vacancy-hopping mechanism and a larger number of thermodynamic and kinetic parameters derived from independent experimental data and theoretical calculations. The model gave an excellent match to the experimentally observed microstructures, and it reproduced features such as the clustering of Ni and Mn before the precipitation of Cu. The model also allowed time-dependent behaviour to be investigated, and it showed that solute clustering of Ni and Mn occurs during the cooling of the alloy. These clusters then act as heterogeneous nucleation sites for the formation of copper precipitates. Understanding such complex solute interaction effects through combined experiment and modelling is an essential step to controlling nucleation and hence the fine-scale microstructures in advanced engineering alloys.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2002.1139</identifier><identifier>PMID: 12662449</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Alloys ; Atom Probe ; Atoms ; Biophysical Phenomena ; Biophysics ; Cobalt - chemistry ; Copper - chemistry ; Ising model ; Manganese - chemistry ; Modeling ; Monte Carlo Method ; Monte Carlo Modelling ; Nickel - chemistry ; Nucleation ; Parametric models ; Precipitates ; Precipitation ; Simulations ; Solutes ; Steels ; Thermodynamics ; Time Factors</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2003-03, Vol.361 (1804), p.463-477</ispartof><rights>Copyright 2003 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c599t-ca03751e75dd007a98a307c5341794bbf30c0686d3d3f042d1d0443e1205cd883</citedby><cites>FETCH-LOGICAL-c599t-ca03751e75dd007a98a307c5341794bbf30c0686d3d3f042d1d0443e1205cd883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3559184$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3559184$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,832,27924,27925,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12662449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kelton, K. F.</contributor><contributor>Herlach, D. M.</contributor><contributor>Greer, A. L.</contributor><contributor>Greenwood, G. W.</contributor><contributor>Greer, A. L.</contributor><contributor>Herlach, D. M.</contributor><contributor>Greenwood, G. W.</contributor><contributor>Kelton, K. F.</contributor><creatorcontrib>Cerezo, A.</creatorcontrib><creatorcontrib>Hirosawa, S.</creatorcontrib><creatorcontrib>Rozdilsky, I.</creatorcontrib><creatorcontrib>Smith, G. D. W.</creatorcontrib><title>Combined atomic–scale modelling and experimental studies of nucleation in the solid state</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><description>The process of solid-state nucleation in highly supersaturated solid solutions has been investigated on the atomic scale by a combination of three-dimensional atom probe analysis and atomistic modelling using dynamical Ising models. In binary Cu-Co alloys, a simple atom-exchange model with a single thermodynamic parameter derived from phase-diagram data was able to reproduce the atomic-scale microstructures observed in the atom probe, and also match the measured peak precipitate density. Modelling solute effects in complex copper-bearing steels required a more sophisticated model based on a vacancy-hopping mechanism and a larger number of thermodynamic and kinetic parameters derived from independent experimental data and theoretical calculations. The model gave an excellent match to the experimentally observed microstructures, and it reproduced features such as the clustering of Ni and Mn before the precipitation of Cu. The model also allowed time-dependent behaviour to be investigated, and it showed that solute clustering of Ni and Mn occurs during the cooling of the alloy. These clusters then act as heterogeneous nucleation sites for the formation of copper precipitates. Understanding such complex solute interaction effects through combined experiment and modelling is an essential step to controlling nucleation and hence the fine-scale microstructures in advanced engineering alloys.</description><subject>Alloys</subject><subject>Atom Probe</subject><subject>Atoms</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Cobalt - chemistry</subject><subject>Copper - chemistry</subject><subject>Ising model</subject><subject>Manganese - chemistry</subject><subject>Modeling</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo Modelling</subject><subject>Nickel - chemistry</subject><subject>Nucleation</subject><subject>Parametric models</subject><subject>Precipitates</subject><subject>Precipitation</subject><subject>Simulations</subject><subject>Solutes</subject><subject>Steels</subject><subject>Thermodynamics</subject><subject>Time Factors</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9ks1u1DAUhSMEoj-wZYVQVuwy2LHjxCtUjaBFGkAqBY3EwvLYNx0PSZzaDnRY8Q68IU-CMxkVKkRXcXS_e869x06SJxjNMOLVC-eDnOUI5TOMCb-XHGJa4iznLL8fz4TRrEBkeZAceb9BCGNW5A-TA5wzllPKD5PPc9uuTAc6lcG2Rv368dMr2UDaWg1NY7rLVHY6hesenGmhC7JJfRi0AZ_aOu0G1YAMxnap6dKwhtTbxuiIyACPkge1bDw83n-Pk4-vX13Mz7LF-9M385NFpgrOQ6YkImWBoSy0RqiUvJIElaogFJecrlY1QQqximmiSY1orrFGlBLAOSqUripynDyfdHtnrwbwQbTGqzi97MAOXpQEUxYVIjibQOWs9w5q0celpNsKjMQYpxjjFGOcYowzNjzbKw-rFvQffJ9fBMgEOLuNK1plIGzFxg6ui7__l_V3dZ1_uDjBnLOvhGGDK0QFqghGZU4oFd9Nv5MbAREBYbwfQOyw2zb_uj6dXDc-WHezCykKjisay9lUNj7A9U1Zui-ClfGCxKeKisXy3fny7eJMjPzLiV-by_U340Dc2mZnrmwX4pvZzbmbkDIi6qFpRK_rqIDuVLDbPmr83Ut-A_L36PY</recordid><startdate>20030315</startdate><enddate>20030315</enddate><creator>Cerezo, A.</creator><creator>Hirosawa, S.</creator><creator>Rozdilsky, I.</creator><creator>Smith, G. D. W.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030315</creationdate><title>Combined atomic–scale modelling and experimental studies of nucleation in the solid state</title><author>Cerezo, A. ; Hirosawa, S. ; Rozdilsky, I. ; Smith, G. D. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c599t-ca03751e75dd007a98a307c5341794bbf30c0686d3d3f042d1d0443e1205cd883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Alloys</topic><topic>Atom Probe</topic><topic>Atoms</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Cobalt - chemistry</topic><topic>Copper - chemistry</topic><topic>Ising model</topic><topic>Manganese - chemistry</topic><topic>Modeling</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo Modelling</topic><topic>Nickel - chemistry</topic><topic>Nucleation</topic><topic>Parametric models</topic><topic>Precipitates</topic><topic>Precipitation</topic><topic>Simulations</topic><topic>Solutes</topic><topic>Steels</topic><topic>Thermodynamics</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cerezo, A.</creatorcontrib><creatorcontrib>Hirosawa, S.</creatorcontrib><creatorcontrib>Rozdilsky, I.</creatorcontrib><creatorcontrib>Smith, G. D. W.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cerezo, A.</au><au>Hirosawa, S.</au><au>Rozdilsky, I.</au><au>Smith, G. D. W.</au><au>Kelton, K. F.</au><au>Herlach, D. M.</au><au>Greer, A. L.</au><au>Greenwood, G. W.</au><au>Greer, A. L.</au><au>Herlach, D. M.</au><au>Greenwood, G. W.</au><au>Kelton, K. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined atomic–scale modelling and experimental studies of nucleation in the solid state</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><date>2003-03-15</date><risdate>2003</risdate><volume>361</volume><issue>1804</issue><spage>463</spage><epage>477</epage><pages>463-477</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>The process of solid-state nucleation in highly supersaturated solid solutions has been investigated on the atomic scale by a combination of three-dimensional atom probe analysis and atomistic modelling using dynamical Ising models. In binary Cu-Co alloys, a simple atom-exchange model with a single thermodynamic parameter derived from phase-diagram data was able to reproduce the atomic-scale microstructures observed in the atom probe, and also match the measured peak precipitate density. Modelling solute effects in complex copper-bearing steels required a more sophisticated model based on a vacancy-hopping mechanism and a larger number of thermodynamic and kinetic parameters derived from independent experimental data and theoretical calculations. The model gave an excellent match to the experimentally observed microstructures, and it reproduced features such as the clustering of Ni and Mn before the precipitation of Cu. The model also allowed time-dependent behaviour to be investigated, and it showed that solute clustering of Ni and Mn occurs during the cooling of the alloy. These clusters then act as heterogeneous nucleation sites for the formation of copper precipitates. Understanding such complex solute interaction effects through combined experiment and modelling is an essential step to controlling nucleation and hence the fine-scale microstructures in advanced engineering alloys.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>12662449</pmid><doi>10.1098/rsta.2002.1139</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2003-03, Vol.361 (1804), p.463-477
issn 1364-503X
1471-2962
language eng
recordid cdi_proquest_miscellaneous_73146068
source MEDLINE; JSTOR Mathematics & Statistics; Free Full-Text Journals in Chemistry
subjects Alloys
Atom Probe
Atoms
Biophysical Phenomena
Biophysics
Cobalt - chemistry
Copper - chemistry
Ising model
Manganese - chemistry
Modeling
Monte Carlo Method
Monte Carlo Modelling
Nickel - chemistry
Nucleation
Parametric models
Precipitates
Precipitation
Simulations
Solutes
Steels
Thermodynamics
Time Factors
title Combined atomic–scale modelling and experimental studies of nucleation in the solid state
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20atomic%E2%80%93scale%20modelling%20and%20experimental%20studies%20of%20nucleation%20in%20the%20solid%20state&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Cerezo,%20A.&rft.date=2003-03-15&rft.volume=361&rft.issue=1804&rft.spage=463&rft.epage=477&rft.pages=463-477&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2002.1139&rft_dat=%3Cjstor_proqu%3E3559184%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73146068&rft_id=info:pmid/12662449&rft_jstor_id=3559184&rfr_iscdi=true