Phenylketonuria: Genotype-phenotype correlations based on expression analysis of structural and functional mutations in PAH
When analyzed in the context of the phenylalanine hydroxylase (PAH) three‐dimensional structure, only a minority of the PKU mutations described world‐wide affect catalytic residues. Consistent with these observations, recent data point to defective folding and subsequent aggregation/degradation as a...
Gespeichert in:
Veröffentlicht in: | Human mutation 2003-04, Vol.21 (4), p.370-378 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 378 |
---|---|
container_issue | 4 |
container_start_page | 370 |
container_title | Human mutation |
container_volume | 21 |
creator | Pey, Angel L. Desviat, Lourdes R. Gámez, Alejandra Ugarte, Magdalena Pérez, Belén |
description | When analyzed in the context of the phenylalanine hydroxylase (PAH) three‐dimensional structure, only a minority of the PKU mutations described world‐wide affect catalytic residues. Consistent with these observations, recent data point to defective folding and subsequent aggregation/degradation as a predominant disease mechanism for several mutations. In this work, we use a combined approach of expression in eukaryotic cells at different temperatures and a prokaryotic system with co‐expression of chaperonins to elucidate and confirm structural consequences for 18 PKU mutations. Three mutations are located in the amino terminal regulatory domain and 15 in the catalytic domain. Four mutations were found to abolish the specific activity in all conditions. Two are catalytic mutations (Y277D and E280K) and two are severe structural defects (IVS10–11G>A and L311P). All the remaining mutations (D59Y, I65T, E76G, P122Q, R158Q, G218V, R243Q, P244L, R252W, R261Q, A309V, R408Q, R408W, and Y414C) are folding defects causing reduced stability and accelerated degradation, although some of them probably affect residues involved in regulation. In these cases, we have demonstrated that the amount of mutant PAH protein and residual activity could be modulated by in vitro experimental conditions, and therefore the observed in vivo metabolic variation may be explained by interindividual variation in the quality control systems. The results derived provide an experimental framework to define the mutation severity relating genotype to phenotype. They also explain the observed inconsistencies for some mutations in patients with similar genotype and different phenotypes. Hum Mutat 21:370–378, 2003. © 2003 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/humu.10198 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_73115000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>787192571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3558-f9a57671365d621bfd986c762f8ff9e386ebc870048f2b8c7867aff27666cc113</originalsourceid><addsrcrecordid>eNpdUU2P0zAUtBCI_YALPwBZHLgF4rj-CLfVClpggQpRdW-W4zyr2U3sYMfajfjzuNsCEiePxzNPzzMIvSDlG1KW1dtdGlJGpJaP0Ckpa1lkevF4j1ldCFEvTtBZjDdlWUrG6FN0QirOGFvwU_RrvQM397cweZdCp9_hJTg_zSMU4-6IsPEhQK-nzruIGx2hxd5huB8DxJhJrJ3u59hF7C2OU0hmSkH3mW6xTc7sjfk6pOk4o3N4fbF6hp5Y3Ud4fjzP0ebD-x-Xq-Lq2_Lj5cVVYShjsrC1ZoILQjlreUUa29aSG8ErK62tgUoOjZEif1naqpFGSC60tZXgnBtDCD1Hrw9zx-B_JoiTGrpooO-1A5-iEpQQlsPJwlf_CW98Cnn1qEgtqpwko1n08ihKzQCtGkM36DCrP5lmATkI7roe5n_vpdq3pfZtqYe21GrzZfOAsqc4eLo4wf1fjw63igsqmNp-Xarv29X19vOna7WmvwF3ypls</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197277953</pqid></control><display><type>article</type><title>Phenylketonuria: Genotype-phenotype correlations based on expression analysis of structural and functional mutations in PAH</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pey, Angel L. ; Desviat, Lourdes R. ; Gámez, Alejandra ; Ugarte, Magdalena ; Pérez, Belén</creator><creatorcontrib>Pey, Angel L. ; Desviat, Lourdes R. ; Gámez, Alejandra ; Ugarte, Magdalena ; Pérez, Belén</creatorcontrib><description>When analyzed in the context of the phenylalanine hydroxylase (PAH) three‐dimensional structure, only a minority of the PKU mutations described world‐wide affect catalytic residues. Consistent with these observations, recent data point to defective folding and subsequent aggregation/degradation as a predominant disease mechanism for several mutations. In this work, we use a combined approach of expression in eukaryotic cells at different temperatures and a prokaryotic system with co‐expression of chaperonins to elucidate and confirm structural consequences for 18 PKU mutations. Three mutations are located in the amino terminal regulatory domain and 15 in the catalytic domain. Four mutations were found to abolish the specific activity in all conditions. Two are catalytic mutations (Y277D and E280K) and two are severe structural defects (IVS10–11G>A and L311P). All the remaining mutations (D59Y, I65T, E76G, P122Q, R158Q, G218V, R243Q, P244L, R252W, R261Q, A309V, R408Q, R408W, and Y414C) are folding defects causing reduced stability and accelerated degradation, although some of them probably affect residues involved in regulation. In these cases, we have demonstrated that the amount of mutant PAH protein and residual activity could be modulated by in vitro experimental conditions, and therefore the observed in vivo metabolic variation may be explained by interindividual variation in the quality control systems. The results derived provide an experimental framework to define the mutation severity relating genotype to phenotype. They also explain the observed inconsistencies for some mutations in patients with similar genotype and different phenotypes. Hum Mutat 21:370–378, 2003. © 2003 Wiley‐Liss, Inc.</description><identifier>ISSN: 1059-7794</identifier><identifier>EISSN: 1098-1004</identifier><identifier>DOI: 10.1002/humu.10198</identifier><identifier>PMID: 12655546</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Amino Acid Substitution - genetics ; Amino Acid Substitution - physiology ; Animals ; Cell Line ; Cercopithecus aethiops ; chaperonins ; Computational Biology - methods ; Computer Simulation ; COS Cells ; Escherichia coli - enzymology ; Escherichia coli - genetics ; expression analysis ; folding mutations ; Gene Expression Regulation, Enzymologic - genetics ; Gene Expression Regulation, Enzymologic - physiology ; Genotype ; genotypendashphenotype ; Humans ; Mice ; Mutation ; PAH ; Phenotype ; phenylalanine hydroxylase ; Phenylalanine Hydroxylase - chemistry ; Phenylalanine Hydroxylase - genetics ; Phenylalanine Hydroxylase - isolation & purification ; Phenylalanine Hydroxylase - physiology ; phenylketonuria ; Phenylketonurias - enzymology ; Phenylketonurias - genetics ; PKU ; Protein Folding ; Protein Structure, Quaternary - genetics ; Protein Structure, Quaternary - physiology ; Rats ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - isolation & purification ; Recombinant Fusion Proteins - physiology ; Structure-Activity Relationship</subject><ispartof>Human mutation, 2003-04, Vol.21 (4), p.370-378</ispartof><rights>Copyright © 2003 Wiley‐Liss, Inc.</rights><rights>Copyright 2003 Wiley-Liss, Inc.</rights><rights>Copyright © 2003 Wiley-Liss, Inc., A Wiley Company</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3558-f9a57671365d621bfd986c762f8ff9e386ebc870048f2b8c7867aff27666cc113</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhumu.10198$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhumu.10198$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12655546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pey, Angel L.</creatorcontrib><creatorcontrib>Desviat, Lourdes R.</creatorcontrib><creatorcontrib>Gámez, Alejandra</creatorcontrib><creatorcontrib>Ugarte, Magdalena</creatorcontrib><creatorcontrib>Pérez, Belén</creatorcontrib><title>Phenylketonuria: Genotype-phenotype correlations based on expression analysis of structural and functional mutations in PAH</title><title>Human mutation</title><addtitle>Hum. Mutat</addtitle><description>When analyzed in the context of the phenylalanine hydroxylase (PAH) three‐dimensional structure, only a minority of the PKU mutations described world‐wide affect catalytic residues. Consistent with these observations, recent data point to defective folding and subsequent aggregation/degradation as a predominant disease mechanism for several mutations. In this work, we use a combined approach of expression in eukaryotic cells at different temperatures and a prokaryotic system with co‐expression of chaperonins to elucidate and confirm structural consequences for 18 PKU mutations. Three mutations are located in the amino terminal regulatory domain and 15 in the catalytic domain. Four mutations were found to abolish the specific activity in all conditions. Two are catalytic mutations (Y277D and E280K) and two are severe structural defects (IVS10–11G>A and L311P). All the remaining mutations (D59Y, I65T, E76G, P122Q, R158Q, G218V, R243Q, P244L, R252W, R261Q, A309V, R408Q, R408W, and Y414C) are folding defects causing reduced stability and accelerated degradation, although some of them probably affect residues involved in regulation. In these cases, we have demonstrated that the amount of mutant PAH protein and residual activity could be modulated by in vitro experimental conditions, and therefore the observed in vivo metabolic variation may be explained by interindividual variation in the quality control systems. The results derived provide an experimental framework to define the mutation severity relating genotype to phenotype. They also explain the observed inconsistencies for some mutations in patients with similar genotype and different phenotypes. Hum Mutat 21:370–378, 2003. © 2003 Wiley‐Liss, Inc.</description><subject>Amino Acid Substitution - genetics</subject><subject>Amino Acid Substitution - physiology</subject><subject>Animals</subject><subject>Cell Line</subject><subject>Cercopithecus aethiops</subject><subject>chaperonins</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>COS Cells</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>expression analysis</subject><subject>folding mutations</subject><subject>Gene Expression Regulation, Enzymologic - genetics</subject><subject>Gene Expression Regulation, Enzymologic - physiology</subject><subject>Genotype</subject><subject>genotypendashphenotype</subject><subject>Humans</subject><subject>Mice</subject><subject>Mutation</subject><subject>PAH</subject><subject>Phenotype</subject><subject>phenylalanine hydroxylase</subject><subject>Phenylalanine Hydroxylase - chemistry</subject><subject>Phenylalanine Hydroxylase - genetics</subject><subject>Phenylalanine Hydroxylase - isolation & purification</subject><subject>Phenylalanine Hydroxylase - physiology</subject><subject>phenylketonuria</subject><subject>Phenylketonurias - enzymology</subject><subject>Phenylketonurias - genetics</subject><subject>PKU</subject><subject>Protein Folding</subject><subject>Protein Structure, Quaternary - genetics</subject><subject>Protein Structure, Quaternary - physiology</subject><subject>Rats</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - isolation & purification</subject><subject>Recombinant Fusion Proteins - physiology</subject><subject>Structure-Activity Relationship</subject><issn>1059-7794</issn><issn>1098-1004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdUU2P0zAUtBCI_YALPwBZHLgF4rj-CLfVClpggQpRdW-W4zyr2U3sYMfajfjzuNsCEiePxzNPzzMIvSDlG1KW1dtdGlJGpJaP0Ckpa1lkevF4j1ldCFEvTtBZjDdlWUrG6FN0QirOGFvwU_RrvQM397cweZdCp9_hJTg_zSMU4-6IsPEhQK-nzruIGx2hxd5huB8DxJhJrJ3u59hF7C2OU0hmSkH3mW6xTc7sjfk6pOk4o3N4fbF6hp5Y3Ud4fjzP0ebD-x-Xq-Lq2_Lj5cVVYShjsrC1ZoILQjlreUUa29aSG8ErK62tgUoOjZEif1naqpFGSC60tZXgnBtDCD1Hrw9zx-B_JoiTGrpooO-1A5-iEpQQlsPJwlf_CW98Cnn1qEgtqpwko1n08ihKzQCtGkM36DCrP5lmATkI7roe5n_vpdq3pfZtqYe21GrzZfOAsqc4eLo4wf1fjw63igsqmNp-Xarv29X19vOna7WmvwF3ypls</recordid><startdate>200304</startdate><enddate>200304</enddate><creator>Pey, Angel L.</creator><creator>Desviat, Lourdes R.</creator><creator>Gámez, Alejandra</creator><creator>Ugarte, Magdalena</creator><creator>Pérez, Belén</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Hindawi Limited</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200304</creationdate><title>Phenylketonuria: Genotype-phenotype correlations based on expression analysis of structural and functional mutations in PAH</title><author>Pey, Angel L. ; Desviat, Lourdes R. ; Gámez, Alejandra ; Ugarte, Magdalena ; Pérez, Belén</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3558-f9a57671365d621bfd986c762f8ff9e386ebc870048f2b8c7867aff27666cc113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Amino Acid Substitution - genetics</topic><topic>Amino Acid Substitution - physiology</topic><topic>Animals</topic><topic>Cell Line</topic><topic>Cercopithecus aethiops</topic><topic>chaperonins</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>COS Cells</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>expression analysis</topic><topic>folding mutations</topic><topic>Gene Expression Regulation, Enzymologic - genetics</topic><topic>Gene Expression Regulation, Enzymologic - physiology</topic><topic>Genotype</topic><topic>genotypendashphenotype</topic><topic>Humans</topic><topic>Mice</topic><topic>Mutation</topic><topic>PAH</topic><topic>Phenotype</topic><topic>phenylalanine hydroxylase</topic><topic>Phenylalanine Hydroxylase - chemistry</topic><topic>Phenylalanine Hydroxylase - genetics</topic><topic>Phenylalanine Hydroxylase - isolation & purification</topic><topic>Phenylalanine Hydroxylase - physiology</topic><topic>phenylketonuria</topic><topic>Phenylketonurias - enzymology</topic><topic>Phenylketonurias - genetics</topic><topic>PKU</topic><topic>Protein Folding</topic><topic>Protein Structure, Quaternary - genetics</topic><topic>Protein Structure, Quaternary - physiology</topic><topic>Rats</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - isolation & purification</topic><topic>Recombinant Fusion Proteins - physiology</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pey, Angel L.</creatorcontrib><creatorcontrib>Desviat, Lourdes R.</creatorcontrib><creatorcontrib>Gámez, Alejandra</creatorcontrib><creatorcontrib>Ugarte, Magdalena</creatorcontrib><creatorcontrib>Pérez, Belén</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Human mutation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pey, Angel L.</au><au>Desviat, Lourdes R.</au><au>Gámez, Alejandra</au><au>Ugarte, Magdalena</au><au>Pérez, Belén</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phenylketonuria: Genotype-phenotype correlations based on expression analysis of structural and functional mutations in PAH</atitle><jtitle>Human mutation</jtitle><addtitle>Hum. Mutat</addtitle><date>2003-04</date><risdate>2003</risdate><volume>21</volume><issue>4</issue><spage>370</spage><epage>378</epage><pages>370-378</pages><issn>1059-7794</issn><eissn>1098-1004</eissn><abstract>When analyzed in the context of the phenylalanine hydroxylase (PAH) three‐dimensional structure, only a minority of the PKU mutations described world‐wide affect catalytic residues. Consistent with these observations, recent data point to defective folding and subsequent aggregation/degradation as a predominant disease mechanism for several mutations. In this work, we use a combined approach of expression in eukaryotic cells at different temperatures and a prokaryotic system with co‐expression of chaperonins to elucidate and confirm structural consequences for 18 PKU mutations. Three mutations are located in the amino terminal regulatory domain and 15 in the catalytic domain. Four mutations were found to abolish the specific activity in all conditions. Two are catalytic mutations (Y277D and E280K) and two are severe structural defects (IVS10–11G>A and L311P). All the remaining mutations (D59Y, I65T, E76G, P122Q, R158Q, G218V, R243Q, P244L, R252W, R261Q, A309V, R408Q, R408W, and Y414C) are folding defects causing reduced stability and accelerated degradation, although some of them probably affect residues involved in regulation. In these cases, we have demonstrated that the amount of mutant PAH protein and residual activity could be modulated by in vitro experimental conditions, and therefore the observed in vivo metabolic variation may be explained by interindividual variation in the quality control systems. The results derived provide an experimental framework to define the mutation severity relating genotype to phenotype. They also explain the observed inconsistencies for some mutations in patients with similar genotype and different phenotypes. Hum Mutat 21:370–378, 2003. © 2003 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>12655546</pmid><doi>10.1002/humu.10198</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-7794 |
ispartof | Human mutation, 2003-04, Vol.21 (4), p.370-378 |
issn | 1059-7794 1098-1004 |
language | eng |
recordid | cdi_proquest_miscellaneous_73115000 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Amino Acid Substitution - genetics Amino Acid Substitution - physiology Animals Cell Line Cercopithecus aethiops chaperonins Computational Biology - methods Computer Simulation COS Cells Escherichia coli - enzymology Escherichia coli - genetics expression analysis folding mutations Gene Expression Regulation, Enzymologic - genetics Gene Expression Regulation, Enzymologic - physiology Genotype genotypendashphenotype Humans Mice Mutation PAH Phenotype phenylalanine hydroxylase Phenylalanine Hydroxylase - chemistry Phenylalanine Hydroxylase - genetics Phenylalanine Hydroxylase - isolation & purification Phenylalanine Hydroxylase - physiology phenylketonuria Phenylketonurias - enzymology Phenylketonurias - genetics PKU Protein Folding Protein Structure, Quaternary - genetics Protein Structure, Quaternary - physiology Rats Recombinant Fusion Proteins - chemistry Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - isolation & purification Recombinant Fusion Proteins - physiology Structure-Activity Relationship |
title | Phenylketonuria: Genotype-phenotype correlations based on expression analysis of structural and functional mutations in PAH |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phenylketonuria:%20Genotype-phenotype%20correlations%20based%20on%20expression%20analysis%20of%20structural%20and%20functional%20mutations%20in%20PAH&rft.jtitle=Human%20mutation&rft.au=Pey,%20Angel%20L.&rft.date=2003-04&rft.volume=21&rft.issue=4&rft.spage=370&rft.epage=378&rft.pages=370-378&rft.issn=1059-7794&rft.eissn=1098-1004&rft_id=info:doi/10.1002/humu.10198&rft_dat=%3Cproquest_pubme%3E787192571%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197277953&rft_id=info:pmid/12655546&rfr_iscdi=true |