Punch Geometry and Formulation Considerations in Reducing Tablet Friability and Their Effect on In Vitro Dissolution
The tablet friability resulting from formulation variations was studied under controlled granulation moisture content and tablet crushing strength. Tablets made with lactose were more friable than tablets made with microcrystalline cellulose. Replacement of 0.5% magnesium stearate with 0.5% stearic...
Gespeichert in:
Veröffentlicht in: | Journal of pharmaceutical sciences 1992-03, Vol.81 (3), p.290-294 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The tablet friability resulting from formulation variations was studied under controlled granulation moisture content and tablet crushing strength. Tablets made with lactose were more friable than tablets made with microcrystalline cellulose. Replacement of 0.5% magnesium stearate with 0.5% stearic acid in the formula reduced tablet friability, whereas the combination of 0.5% stearic acid and up to 0.25% magnesium stearate did not increase tablet friability, decrease drug dissolution rate, or increase tablet-to-tablet variability in dissolution. Tablets compressed with extra deep concave punches resulted in lower friability compared with tablets compressed with standard concave or deep concave punches. The friabilities of the standard convex and deep convex tablets were similar, indicating that a critical level of punch tip curvature was important in reducing tablet friability. The dissolution rate was not affected by the punch tip geometry, but the tablet-to-tablet dissolution variability at the 0.5% stearic acid level for the extra deep convex tablets was higher compared with the standard convex tablets. |
---|---|
ISSN: | 0022-3549 1520-6017 |
DOI: | 10.1002/jps.2600810320 |