Measurement of emulsion droplet sizes using PFG NMR and regularization methods

The droplet size distributions of emulsions have been measured using pulsed field gradient (PFG) nuclear magnetic resonance (NMR) for many years. This technique finds particular application with emulsions that are concentrated and/or opaque, since such emulsion systems are difficult to characterize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2003-02, Vol.258 (2), p.383-389
Hauptverfasser: Hollingsworth, K.G., Johns, M.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 389
container_issue 2
container_start_page 383
container_title Journal of colloid and interface science
container_volume 258
creator Hollingsworth, K.G.
Johns, M.L.
description The droplet size distributions of emulsions have been measured using pulsed field gradient (PFG) nuclear magnetic resonance (NMR) for many years. This technique finds particular application with emulsions that are concentrated and/or opaque, since such emulsion systems are difficult to characterize by other methods. Most studies employing PFG techniques assume a lognormal form when extracting the droplet size distribution from the experimental data. It is clearly desirable to retrieve a droplet size distribution from the experimental data without assuming such a functional form. This is achieved for the first time using regularization techniques. Regularization based on the distribution area and on its second derivative are compared and assessed along with the following techniques for selecting the optimal regularization parameter: the L-curve method, generalized cross validation (GCV), and the discrepancy principle. Regularization is applied to both simulated data sets and experimental data. It is found that when the experimental error can be estimated accurately, the discrepancy principle with area regularization is the best approach. When the error is not known the GCV method, with second derivative regularization and allowing only nonnegative values, is most effective.
doi_str_mv 10.1016/S0021-9797(02)00131-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73079584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979702001315</els_id><sourcerecordid>73079584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-f32aae536579e7bd904d12f33c6abb294e3586cd32cda0f2f4912033ff0d5b583</originalsourceid><addsrcrecordid>eNqF0EtP3DAQwHGrAnUX2o_QyhcqOIT6ESfxqaoQC0g8qj7OlmOPwSiPrSdBgk9P9iH2yGkuv7FHf0K-cHbKGS--_2FM8EyXujxm4oQxLnmmPpA5Z1plJWdyj8zfyIwcID5OiCulP5IZFwWvJjkntzdgcUzQQjfQPlBoxwZj31Gf-mUDA8X4AkhHjN09_bW4oLc3v6ntPE1wPzY2xRc7rHgLw0Pv8RPZD7ZB-Lydh-Tf4vzv2WV2fXdxdfbzOnNS8yELUlgLShaq1FDWXrPccxGkdIWta6FzkKoqnJfCecuCCLnmgkkZAvOqVpU8JN827y5T_38EHEwb0UHT2A76EU0pWalVlU9QbaBLPWKCYJYptjY9G87MKqRZhzSrSoYJsw5p1LT3dfvBWLfgd1vbchM42gKLzjYh2c5F3Lm8yHkly8n92DiYcjxFSAZdhM6BjwncYHwf3znlFe7Fj1U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73079584</pqid></control><display><type>article</type><title>Measurement of emulsion droplet sizes using PFG NMR and regularization methods</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hollingsworth, K.G. ; Johns, M.L.</creator><creatorcontrib>Hollingsworth, K.G. ; Johns, M.L.</creatorcontrib><description>The droplet size distributions of emulsions have been measured using pulsed field gradient (PFG) nuclear magnetic resonance (NMR) for many years. This technique finds particular application with emulsions that are concentrated and/or opaque, since such emulsion systems are difficult to characterize by other methods. Most studies employing PFG techniques assume a lognormal form when extracting the droplet size distribution from the experimental data. It is clearly desirable to retrieve a droplet size distribution from the experimental data without assuming such a functional form. This is achieved for the first time using regularization techniques. Regularization based on the distribution area and on its second derivative are compared and assessed along with the following techniques for selecting the optimal regularization parameter: the L-curve method, generalized cross validation (GCV), and the discrepancy principle. Regularization is applied to both simulated data sets and experimental data. It is found that when the experimental error can be estimated accurately, the discrepancy principle with area regularization is the best approach. When the error is not known the GCV method, with second derivative regularization and allowing only nonnegative values, is most effective.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/S0021-9797(02)00131-5</identifier><identifier>PMID: 12618109</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Chemistry ; Colloidal state and disperse state ; Droplet size distributions ; Emulsions ; Emulsions. Microemulsions. Foams ; Exact sciences and technology ; General and physical chemistry ; NMR ; PFG ; Regularization</subject><ispartof>Journal of colloid and interface science, 2003-02, Vol.258 (2), p.383-389</ispartof><rights>2003 Elsevier Science (USA)</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-f32aae536579e7bd904d12f33c6abb294e3586cd32cda0f2f4912033ff0d5b583</citedby><cites>FETCH-LOGICAL-c391t-f32aae536579e7bd904d12f33c6abb294e3586cd32cda0f2f4912033ff0d5b583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0021-9797(02)00131-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14641837$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12618109$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hollingsworth, K.G.</creatorcontrib><creatorcontrib>Johns, M.L.</creatorcontrib><title>Measurement of emulsion droplet sizes using PFG NMR and regularization methods</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>The droplet size distributions of emulsions have been measured using pulsed field gradient (PFG) nuclear magnetic resonance (NMR) for many years. This technique finds particular application with emulsions that are concentrated and/or opaque, since such emulsion systems are difficult to characterize by other methods. Most studies employing PFG techniques assume a lognormal form when extracting the droplet size distribution from the experimental data. It is clearly desirable to retrieve a droplet size distribution from the experimental data without assuming such a functional form. This is achieved for the first time using regularization techniques. Regularization based on the distribution area and on its second derivative are compared and assessed along with the following techniques for selecting the optimal regularization parameter: the L-curve method, generalized cross validation (GCV), and the discrepancy principle. Regularization is applied to both simulated data sets and experimental data. It is found that when the experimental error can be estimated accurately, the discrepancy principle with area regularization is the best approach. When the error is not known the GCV method, with second derivative regularization and allowing only nonnegative values, is most effective.</description><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Droplet size distributions</subject><subject>Emulsions</subject><subject>Emulsions. Microemulsions. Foams</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>NMR</subject><subject>PFG</subject><subject>Regularization</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqF0EtP3DAQwHGrAnUX2o_QyhcqOIT6ESfxqaoQC0g8qj7OlmOPwSiPrSdBgk9P9iH2yGkuv7FHf0K-cHbKGS--_2FM8EyXujxm4oQxLnmmPpA5Z1plJWdyj8zfyIwcID5OiCulP5IZFwWvJjkntzdgcUzQQjfQPlBoxwZj31Gf-mUDA8X4AkhHjN09_bW4oLc3v6ntPE1wPzY2xRc7rHgLw0Pv8RPZD7ZB-Lydh-Tf4vzv2WV2fXdxdfbzOnNS8yELUlgLShaq1FDWXrPccxGkdIWta6FzkKoqnJfCecuCCLnmgkkZAvOqVpU8JN827y5T_38EHEwb0UHT2A76EU0pWalVlU9QbaBLPWKCYJYptjY9G87MKqRZhzSrSoYJsw5p1LT3dfvBWLfgd1vbchM42gKLzjYh2c5F3Lm8yHkly8n92DiYcjxFSAZdhM6BjwncYHwf3znlFe7Fj1U</recordid><startdate>20030215</startdate><enddate>20030215</enddate><creator>Hollingsworth, K.G.</creator><creator>Johns, M.L.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030215</creationdate><title>Measurement of emulsion droplet sizes using PFG NMR and regularization methods</title><author>Hollingsworth, K.G. ; Johns, M.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-f32aae536579e7bd904d12f33c6abb294e3586cd32cda0f2f4912033ff0d5b583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Droplet size distributions</topic><topic>Emulsions</topic><topic>Emulsions. Microemulsions. Foams</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>NMR</topic><topic>PFG</topic><topic>Regularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hollingsworth, K.G.</creatorcontrib><creatorcontrib>Johns, M.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hollingsworth, K.G.</au><au>Johns, M.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of emulsion droplet sizes using PFG NMR and regularization methods</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2003-02-15</date><risdate>2003</risdate><volume>258</volume><issue>2</issue><spage>383</spage><epage>389</epage><pages>383-389</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>The droplet size distributions of emulsions have been measured using pulsed field gradient (PFG) nuclear magnetic resonance (NMR) for many years. This technique finds particular application with emulsions that are concentrated and/or opaque, since such emulsion systems are difficult to characterize by other methods. Most studies employing PFG techniques assume a lognormal form when extracting the droplet size distribution from the experimental data. It is clearly desirable to retrieve a droplet size distribution from the experimental data without assuming such a functional form. This is achieved for the first time using regularization techniques. Regularization based on the distribution area and on its second derivative are compared and assessed along with the following techniques for selecting the optimal regularization parameter: the L-curve method, generalized cross validation (GCV), and the discrepancy principle. Regularization is applied to both simulated data sets and experimental data. It is found that when the experimental error can be estimated accurately, the discrepancy principle with area regularization is the best approach. When the error is not known the GCV method, with second derivative regularization and allowing only nonnegative values, is most effective.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><pmid>12618109</pmid><doi>10.1016/S0021-9797(02)00131-5</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2003-02, Vol.258 (2), p.383-389
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_73079584
source ScienceDirect Journals (5 years ago - present)
subjects Chemistry
Colloidal state and disperse state
Droplet size distributions
Emulsions
Emulsions. Microemulsions. Foams
Exact sciences and technology
General and physical chemistry
NMR
PFG
Regularization
title Measurement of emulsion droplet sizes using PFG NMR and regularization methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20emulsion%20droplet%20sizes%20using%20PFG%20NMR%20and%20regularization%20methods&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Hollingsworth,%20K.G.&rft.date=2003-02-15&rft.volume=258&rft.issue=2&rft.spage=383&rft.epage=389&rft.pages=383-389&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1016/S0021-9797(02)00131-5&rft_dat=%3Cproquest_cross%3E73079584%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73079584&rft_id=info:pmid/12618109&rft_els_id=S0021979702001315&rfr_iscdi=true