Inverted repeat of a heterologous 3′‐untranslated region for high‐efficiency, high‐throughput gene silencing
Summary This report describes a method for the easy generation of inverted repeat constructs for the silencing of genes of unknown sequence which is applicable to high‐throughput studies. This improved procedure for high‐efficiency gene silencing is specific for a target gene, but does not require i...
Gespeichert in:
Veröffentlicht in: | The Plant journal : for cell and molecular biology 2003-02, Vol.33 (4), p.793-800 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 800 |
---|---|
container_issue | 4 |
container_start_page | 793 |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 33 |
creator | Brummell, David A. Balint‐Kurti, Peter J. Harpster, Mark H. Palys, Joseph M. Oeller, Paul W. Gutterson, Neal |
description | Summary
This report describes a method for the easy generation of inverted repeat constructs for the silencing of genes of unknown sequence which is applicable to high‐throughput studies. This improved procedure for high‐efficiency gene silencing is specific for a target gene, but does not require inverted repeat DNA of the target gene in the construct. The method employs an inverted repeat of the 3′‐untranslated region (3′‐UTR) of a heterologous gene, and has been demonstrated using the 3′‐UTR region of the nopaline synthase (nos) gene from Agrobacterium tumefaciens, which is often used as the 3′‐UTR for transgene constructs. In a population of independent tomato primary transformants harboring a stably integrated polygalacturonase (PG) transgene driven by a constitutive promoter and linked to an inverted repeat of the nos 3′‐UTR, 51 of 56 primary transformants (91% of the population) showed highly effective post‐transcriptional silencing of the PG gene, with PG mRNA abundance in ripe fruit reduced by 98% or more. The method was also effective in Arabidopsis, where two different, relatively uncharacterized plant transcription factors were also targeted effectively. This method has the advantage of ease and rapidity in preparation of the constructs, since a gene of interest can be inserted into a binary vector already containing the promoter and the inverted nos domain in a single‐cloning step, and does not require any knowledge of the DNA sequence. The approach is suitable for high‐throughput gene silencing studies, where it is necessary to investigate the function of hundreds to thousands of uncharacterized genes. |
doi_str_mv | 10.1046/j.1365-313X.2003.01659.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73072446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73072446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4769-430f3566562f2d5a96cb2bbda65ecc075cbe6aa667d93b3cabb38f991fc8eb9c3</originalsourceid><addsrcrecordid>eNqNkUFu1DAUhi0EotPCFZA3sCKpHcd2vGCBKlpaVYJFkdhZtvOcZJSJBzuBzq5H6Fk4Uk9Cwgx0CStb_r_nZ78PIUxJTkkpTtc5ZYJnjLKveUEIywkVXOW3T9Dqb_AUrYgSJJMlLY7QcUprQqhkonyOjmghiCKcrNB4OXyHOEKNI2zBjDh4bHALI8TQhyZMCbOHu58Pd_fTMEYzpN7s4aYLA_Yh4rZr2jkG7zvXweB2b_8cjW0MU9NupxE3MABOXT_n3dC8QM-86RO8PKwn6Mv5h5uzj9n1p4vLs_fXmSulUFnJiGdcCC4KX9TcKOFsYW1tBAfniOTOgjBGCFkrZpkz1rLKK0W9q8Aqx07Qm_292xi-TZBGvemSg743A8w_05IRWZSl-CdIK0lLocgMVnvQxZBSBK-3sduYuNOU6EWNXuvFgF4M6EWN_q1G386lrw49JruB-rHw4GIGXh8Ak5zp_Txt16VHruRS0YrN3Ls992Oe5-6_H6BvPl8tO_YLMOSw2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18714690</pqid></control><display><type>article</type><title>Inverted repeat of a heterologous 3′‐untranslated region for high‐efficiency, high‐throughput gene silencing</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><creator>Brummell, David A. ; Balint‐Kurti, Peter J. ; Harpster, Mark H. ; Palys, Joseph M. ; Oeller, Paul W. ; Gutterson, Neal</creator><creatorcontrib>Brummell, David A. ; Balint‐Kurti, Peter J. ; Harpster, Mark H. ; Palys, Joseph M. ; Oeller, Paul W. ; Gutterson, Neal</creatorcontrib><description>Summary
This report describes a method for the easy generation of inverted repeat constructs for the silencing of genes of unknown sequence which is applicable to high‐throughput studies. This improved procedure for high‐efficiency gene silencing is specific for a target gene, but does not require inverted repeat DNA of the target gene in the construct. The method employs an inverted repeat of the 3′‐untranslated region (3′‐UTR) of a heterologous gene, and has been demonstrated using the 3′‐UTR region of the nopaline synthase (nos) gene from Agrobacterium tumefaciens, which is often used as the 3′‐UTR for transgene constructs. In a population of independent tomato primary transformants harboring a stably integrated polygalacturonase (PG) transgene driven by a constitutive promoter and linked to an inverted repeat of the nos 3′‐UTR, 51 of 56 primary transformants (91% of the population) showed highly effective post‐transcriptional silencing of the PG gene, with PG mRNA abundance in ripe fruit reduced by 98% or more. The method was also effective in Arabidopsis, where two different, relatively uncharacterized plant transcription factors were also targeted effectively. This method has the advantage of ease and rapidity in preparation of the constructs, since a gene of interest can be inserted into a binary vector already containing the promoter and the inverted nos domain in a single‐cloning step, and does not require any knowledge of the DNA sequence. The approach is suitable for high‐throughput gene silencing studies, where it is necessary to investigate the function of hundreds to thousands of uncharacterized genes.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1046/j.1365-313X.2003.01659.x</identifier><identifier>PMID: 12609050</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>3' Untranslated Regions - genetics ; Agrobacterium tumefaciens - genetics ; Agrobacterium tumefaciens - metabolism ; Amino Acid Oxidoreductases - genetics ; Amino Acid Oxidoreductases - metabolism ; Arabidopsis - genetics ; Biological and medical sciences ; double‐stranded RNA ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Silencing ; inverted repeat ; Lycopersicon esculentum - genetics ; Molecular and cellular biology ; Molecular genetics ; nos ; Plants, Genetically Modified ; Plasmids - genetics ; Polygalacturonase - genetics ; Polygalacturonase - metabolism ; Repetitive Sequences, Nucleic Acid - genetics ; RNAi ; siRNA</subject><ispartof>The Plant journal : for cell and molecular biology, 2003-02, Vol.33 (4), p.793-800</ispartof><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4769-430f3566562f2d5a96cb2bbda65ecc075cbe6aa667d93b3cabb38f991fc8eb9c3</citedby><cites>FETCH-LOGICAL-c4769-430f3566562f2d5a96cb2bbda65ecc075cbe6aa667d93b3cabb38f991fc8eb9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-313X.2003.01659.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-313X.2003.01659.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14579183$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12609050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brummell, David A.</creatorcontrib><creatorcontrib>Balint‐Kurti, Peter J.</creatorcontrib><creatorcontrib>Harpster, Mark H.</creatorcontrib><creatorcontrib>Palys, Joseph M.</creatorcontrib><creatorcontrib>Oeller, Paul W.</creatorcontrib><creatorcontrib>Gutterson, Neal</creatorcontrib><title>Inverted repeat of a heterologous 3′‐untranslated region for high‐efficiency, high‐throughput gene silencing</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary
This report describes a method for the easy generation of inverted repeat constructs for the silencing of genes of unknown sequence which is applicable to high‐throughput studies. This improved procedure for high‐efficiency gene silencing is specific for a target gene, but does not require inverted repeat DNA of the target gene in the construct. The method employs an inverted repeat of the 3′‐untranslated region (3′‐UTR) of a heterologous gene, and has been demonstrated using the 3′‐UTR region of the nopaline synthase (nos) gene from Agrobacterium tumefaciens, which is often used as the 3′‐UTR for transgene constructs. In a population of independent tomato primary transformants harboring a stably integrated polygalacturonase (PG) transgene driven by a constitutive promoter and linked to an inverted repeat of the nos 3′‐UTR, 51 of 56 primary transformants (91% of the population) showed highly effective post‐transcriptional silencing of the PG gene, with PG mRNA abundance in ripe fruit reduced by 98% or more. The method was also effective in Arabidopsis, where two different, relatively uncharacterized plant transcription factors were also targeted effectively. This method has the advantage of ease and rapidity in preparation of the constructs, since a gene of interest can be inserted into a binary vector already containing the promoter and the inverted nos domain in a single‐cloning step, and does not require any knowledge of the DNA sequence. The approach is suitable for high‐throughput gene silencing studies, where it is necessary to investigate the function of hundreds to thousands of uncharacterized genes.</description><subject>3' Untranslated Regions - genetics</subject><subject>Agrobacterium tumefaciens - genetics</subject><subject>Agrobacterium tumefaciens - metabolism</subject><subject>Amino Acid Oxidoreductases - genetics</subject><subject>Amino Acid Oxidoreductases - metabolism</subject><subject>Arabidopsis - genetics</subject><subject>Biological and medical sciences</subject><subject>double‐stranded RNA</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Silencing</subject><subject>inverted repeat</subject><subject>Lycopersicon esculentum - genetics</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>nos</subject><subject>Plants, Genetically Modified</subject><subject>Plasmids - genetics</subject><subject>Polygalacturonase - genetics</subject><subject>Polygalacturonase - metabolism</subject><subject>Repetitive Sequences, Nucleic Acid - genetics</subject><subject>RNAi</subject><subject>siRNA</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUFu1DAUhi0EotPCFZA3sCKpHcd2vGCBKlpaVYJFkdhZtvOcZJSJBzuBzq5H6Fk4Uk9Cwgx0CStb_r_nZ78PIUxJTkkpTtc5ZYJnjLKveUEIywkVXOW3T9Dqb_AUrYgSJJMlLY7QcUprQqhkonyOjmghiCKcrNB4OXyHOEKNI2zBjDh4bHALI8TQhyZMCbOHu58Pd_fTMEYzpN7s4aYLA_Yh4rZr2jkG7zvXweB2b_8cjW0MU9NupxE3MABOXT_n3dC8QM-86RO8PKwn6Mv5h5uzj9n1p4vLs_fXmSulUFnJiGdcCC4KX9TcKOFsYW1tBAfniOTOgjBGCFkrZpkz1rLKK0W9q8Aqx07Qm_292xi-TZBGvemSg743A8w_05IRWZSl-CdIK0lLocgMVnvQxZBSBK-3sduYuNOU6EWNXuvFgF4M6EWN_q1G386lrw49JruB-rHw4GIGXh8Ak5zp_Txt16VHruRS0YrN3Ls992Oe5-6_H6BvPl8tO_YLMOSw2Q</recordid><startdate>200302</startdate><enddate>200302</enddate><creator>Brummell, David A.</creator><creator>Balint‐Kurti, Peter J.</creator><creator>Harpster, Mark H.</creator><creator>Palys, Joseph M.</creator><creator>Oeller, Paul W.</creator><creator>Gutterson, Neal</creator><general>Blackwell Science Ltd</general><general>Blackwell Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>200302</creationdate><title>Inverted repeat of a heterologous 3′‐untranslated region for high‐efficiency, high‐throughput gene silencing</title><author>Brummell, David A. ; Balint‐Kurti, Peter J. ; Harpster, Mark H. ; Palys, Joseph M. ; Oeller, Paul W. ; Gutterson, Neal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4769-430f3566562f2d5a96cb2bbda65ecc075cbe6aa667d93b3cabb38f991fc8eb9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>3' Untranslated Regions - genetics</topic><topic>Agrobacterium tumefaciens - genetics</topic><topic>Agrobacterium tumefaciens - metabolism</topic><topic>Amino Acid Oxidoreductases - genetics</topic><topic>Amino Acid Oxidoreductases - metabolism</topic><topic>Arabidopsis - genetics</topic><topic>Biological and medical sciences</topic><topic>double‐stranded RNA</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Silencing</topic><topic>inverted repeat</topic><topic>Lycopersicon esculentum - genetics</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>nos</topic><topic>Plants, Genetically Modified</topic><topic>Plasmids - genetics</topic><topic>Polygalacturonase - genetics</topic><topic>Polygalacturonase - metabolism</topic><topic>Repetitive Sequences, Nucleic Acid - genetics</topic><topic>RNAi</topic><topic>siRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brummell, David A.</creatorcontrib><creatorcontrib>Balint‐Kurti, Peter J.</creatorcontrib><creatorcontrib>Harpster, Mark H.</creatorcontrib><creatorcontrib>Palys, Joseph M.</creatorcontrib><creatorcontrib>Oeller, Paul W.</creatorcontrib><creatorcontrib>Gutterson, Neal</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brummell, David A.</au><au>Balint‐Kurti, Peter J.</au><au>Harpster, Mark H.</au><au>Palys, Joseph M.</au><au>Oeller, Paul W.</au><au>Gutterson, Neal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverted repeat of a heterologous 3′‐untranslated region for high‐efficiency, high‐throughput gene silencing</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2003-02</date><risdate>2003</risdate><volume>33</volume><issue>4</issue><spage>793</spage><epage>800</epage><pages>793-800</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary
This report describes a method for the easy generation of inverted repeat constructs for the silencing of genes of unknown sequence which is applicable to high‐throughput studies. This improved procedure for high‐efficiency gene silencing is specific for a target gene, but does not require inverted repeat DNA of the target gene in the construct. The method employs an inverted repeat of the 3′‐untranslated region (3′‐UTR) of a heterologous gene, and has been demonstrated using the 3′‐UTR region of the nopaline synthase (nos) gene from Agrobacterium tumefaciens, which is often used as the 3′‐UTR for transgene constructs. In a population of independent tomato primary transformants harboring a stably integrated polygalacturonase (PG) transgene driven by a constitutive promoter and linked to an inverted repeat of the nos 3′‐UTR, 51 of 56 primary transformants (91% of the population) showed highly effective post‐transcriptional silencing of the PG gene, with PG mRNA abundance in ripe fruit reduced by 98% or more. The method was also effective in Arabidopsis, where two different, relatively uncharacterized plant transcription factors were also targeted effectively. This method has the advantage of ease and rapidity in preparation of the constructs, since a gene of interest can be inserted into a binary vector already containing the promoter and the inverted nos domain in a single‐cloning step, and does not require any knowledge of the DNA sequence. The approach is suitable for high‐throughput gene silencing studies, where it is necessary to investigate the function of hundreds to thousands of uncharacterized genes.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>12609050</pmid><doi>10.1046/j.1365-313X.2003.01659.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2003-02, Vol.33 (4), p.793-800 |
issn | 0960-7412 1365-313X |
language | eng |
recordid | cdi_proquest_miscellaneous_73072446 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; IngentaConnect Free/Open Access Journals |
subjects | 3' Untranslated Regions - genetics Agrobacterium tumefaciens - genetics Agrobacterium tumefaciens - metabolism Amino Acid Oxidoreductases - genetics Amino Acid Oxidoreductases - metabolism Arabidopsis - genetics Biological and medical sciences double‐stranded RNA Fundamental and applied biological sciences. Psychology Gene expression Gene Silencing inverted repeat Lycopersicon esculentum - genetics Molecular and cellular biology Molecular genetics nos Plants, Genetically Modified Plasmids - genetics Polygalacturonase - genetics Polygalacturonase - metabolism Repetitive Sequences, Nucleic Acid - genetics RNAi siRNA |
title | Inverted repeat of a heterologous 3′‐untranslated region for high‐efficiency, high‐throughput gene silencing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A08%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverted%20repeat%20of%20a%20heterologous%203%E2%80%B2%E2%80%90untranslated%20region%20for%20high%E2%80%90efficiency,%20high%E2%80%90throughput%20gene%20silencing&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Brummell,%20David%20A.&rft.date=2003-02&rft.volume=33&rft.issue=4&rft.spage=793&rft.epage=800&rft.pages=793-800&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1046/j.1365-313X.2003.01659.x&rft_dat=%3Cproquest_cross%3E73072446%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18714690&rft_id=info:pmid/12609050&rfr_iscdi=true |