Inverted repeat of a heterologous 3′‐untranslated region for high‐efficiency, high‐throughput gene silencing

Summary This report describes a method for the easy generation of inverted repeat constructs for the silencing of genes of unknown sequence which is applicable to high‐throughput studies. This improved procedure for high‐efficiency gene silencing is specific for a target gene, but does not require i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2003-02, Vol.33 (4), p.793-800
Hauptverfasser: Brummell, David A., Balint‐Kurti, Peter J., Harpster, Mark H., Palys, Joseph M., Oeller, Paul W., Gutterson, Neal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 800
container_issue 4
container_start_page 793
container_title The Plant journal : for cell and molecular biology
container_volume 33
creator Brummell, David A.
Balint‐Kurti, Peter J.
Harpster, Mark H.
Palys, Joseph M.
Oeller, Paul W.
Gutterson, Neal
description Summary This report describes a method for the easy generation of inverted repeat constructs for the silencing of genes of unknown sequence which is applicable to high‐throughput studies. This improved procedure for high‐efficiency gene silencing is specific for a target gene, but does not require inverted repeat DNA of the target gene in the construct. The method employs an inverted repeat of the 3′‐untranslated region (3′‐UTR) of a heterologous gene, and has been demonstrated using the 3′‐UTR region of the nopaline synthase (nos) gene from Agrobacterium tumefaciens, which is often used as the 3′‐UTR for transgene constructs. In a population of independent tomato primary transformants harboring a stably integrated polygalacturonase (PG) transgene driven by a constitutive promoter and linked to an inverted repeat of the nos 3′‐UTR, 51 of 56 primary transformants (91% of the population) showed highly effective post‐transcriptional silencing of the PG gene, with PG mRNA abundance in ripe fruit reduced by 98% or more. The method was also effective in Arabidopsis, where two different, relatively uncharacterized plant transcription factors were also targeted effectively. This method has the advantage of ease and rapidity in preparation of the constructs, since a gene of interest can be inserted into a binary vector already containing the promoter and the inverted nos domain in a single‐cloning step, and does not require any knowledge of the DNA sequence. The approach is suitable for high‐throughput gene silencing studies, where it is necessary to investigate the function of hundreds to thousands of uncharacterized genes.
doi_str_mv 10.1046/j.1365-313X.2003.01659.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73072446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73072446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4769-430f3566562f2d5a96cb2bbda65ecc075cbe6aa667d93b3cabb38f991fc8eb9c3</originalsourceid><addsrcrecordid>eNqNkUFu1DAUhi0EotPCFZA3sCKpHcd2vGCBKlpaVYJFkdhZtvOcZJSJBzuBzq5H6Fk4Uk9Cwgx0CStb_r_nZ78PIUxJTkkpTtc5ZYJnjLKveUEIywkVXOW3T9Dqb_AUrYgSJJMlLY7QcUprQqhkonyOjmghiCKcrNB4OXyHOEKNI2zBjDh4bHALI8TQhyZMCbOHu58Pd_fTMEYzpN7s4aYLA_Yh4rZr2jkG7zvXweB2b_8cjW0MU9NupxE3MABOXT_n3dC8QM-86RO8PKwn6Mv5h5uzj9n1p4vLs_fXmSulUFnJiGdcCC4KX9TcKOFsYW1tBAfniOTOgjBGCFkrZpkz1rLKK0W9q8Aqx07Qm_292xi-TZBGvemSg743A8w_05IRWZSl-CdIK0lLocgMVnvQxZBSBK-3sduYuNOU6EWNXuvFgF4M6EWN_q1G386lrw49JruB-rHw4GIGXh8Ak5zp_Txt16VHruRS0YrN3Ls992Oe5-6_H6BvPl8tO_YLMOSw2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18714690</pqid></control><display><type>article</type><title>Inverted repeat of a heterologous 3′‐untranslated region for high‐efficiency, high‐throughput gene silencing</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><creator>Brummell, David A. ; Balint‐Kurti, Peter J. ; Harpster, Mark H. ; Palys, Joseph M. ; Oeller, Paul W. ; Gutterson, Neal</creator><creatorcontrib>Brummell, David A. ; Balint‐Kurti, Peter J. ; Harpster, Mark H. ; Palys, Joseph M. ; Oeller, Paul W. ; Gutterson, Neal</creatorcontrib><description>Summary This report describes a method for the easy generation of inverted repeat constructs for the silencing of genes of unknown sequence which is applicable to high‐throughput studies. This improved procedure for high‐efficiency gene silencing is specific for a target gene, but does not require inverted repeat DNA of the target gene in the construct. The method employs an inverted repeat of the 3′‐untranslated region (3′‐UTR) of a heterologous gene, and has been demonstrated using the 3′‐UTR region of the nopaline synthase (nos) gene from Agrobacterium tumefaciens, which is often used as the 3′‐UTR for transgene constructs. In a population of independent tomato primary transformants harboring a stably integrated polygalacturonase (PG) transgene driven by a constitutive promoter and linked to an inverted repeat of the nos 3′‐UTR, 51 of 56 primary transformants (91% of the population) showed highly effective post‐transcriptional silencing of the PG gene, with PG mRNA abundance in ripe fruit reduced by 98% or more. The method was also effective in Arabidopsis, where two different, relatively uncharacterized plant transcription factors were also targeted effectively. This method has the advantage of ease and rapidity in preparation of the constructs, since a gene of interest can be inserted into a binary vector already containing the promoter and the inverted nos domain in a single‐cloning step, and does not require any knowledge of the DNA sequence. The approach is suitable for high‐throughput gene silencing studies, where it is necessary to investigate the function of hundreds to thousands of uncharacterized genes.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1046/j.1365-313X.2003.01659.x</identifier><identifier>PMID: 12609050</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>3' Untranslated Regions - genetics ; Agrobacterium tumefaciens - genetics ; Agrobacterium tumefaciens - metabolism ; Amino Acid Oxidoreductases - genetics ; Amino Acid Oxidoreductases - metabolism ; Arabidopsis - genetics ; Biological and medical sciences ; double‐stranded RNA ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Silencing ; inverted repeat ; Lycopersicon esculentum - genetics ; Molecular and cellular biology ; Molecular genetics ; nos ; Plants, Genetically Modified ; Plasmids - genetics ; Polygalacturonase - genetics ; Polygalacturonase - metabolism ; Repetitive Sequences, Nucleic Acid - genetics ; RNAi ; siRNA</subject><ispartof>The Plant journal : for cell and molecular biology, 2003-02, Vol.33 (4), p.793-800</ispartof><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4769-430f3566562f2d5a96cb2bbda65ecc075cbe6aa667d93b3cabb38f991fc8eb9c3</citedby><cites>FETCH-LOGICAL-c4769-430f3566562f2d5a96cb2bbda65ecc075cbe6aa667d93b3cabb38f991fc8eb9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-313X.2003.01659.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-313X.2003.01659.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14579183$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12609050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brummell, David A.</creatorcontrib><creatorcontrib>Balint‐Kurti, Peter J.</creatorcontrib><creatorcontrib>Harpster, Mark H.</creatorcontrib><creatorcontrib>Palys, Joseph M.</creatorcontrib><creatorcontrib>Oeller, Paul W.</creatorcontrib><creatorcontrib>Gutterson, Neal</creatorcontrib><title>Inverted repeat of a heterologous 3′‐untranslated region for high‐efficiency, high‐throughput gene silencing</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary This report describes a method for the easy generation of inverted repeat constructs for the silencing of genes of unknown sequence which is applicable to high‐throughput studies. This improved procedure for high‐efficiency gene silencing is specific for a target gene, but does not require inverted repeat DNA of the target gene in the construct. The method employs an inverted repeat of the 3′‐untranslated region (3′‐UTR) of a heterologous gene, and has been demonstrated using the 3′‐UTR region of the nopaline synthase (nos) gene from Agrobacterium tumefaciens, which is often used as the 3′‐UTR for transgene constructs. In a population of independent tomato primary transformants harboring a stably integrated polygalacturonase (PG) transgene driven by a constitutive promoter and linked to an inverted repeat of the nos 3′‐UTR, 51 of 56 primary transformants (91% of the population) showed highly effective post‐transcriptional silencing of the PG gene, with PG mRNA abundance in ripe fruit reduced by 98% or more. The method was also effective in Arabidopsis, where two different, relatively uncharacterized plant transcription factors were also targeted effectively. This method has the advantage of ease and rapidity in preparation of the constructs, since a gene of interest can be inserted into a binary vector already containing the promoter and the inverted nos domain in a single‐cloning step, and does not require any knowledge of the DNA sequence. The approach is suitable for high‐throughput gene silencing studies, where it is necessary to investigate the function of hundreds to thousands of uncharacterized genes.</description><subject>3' Untranslated Regions - genetics</subject><subject>Agrobacterium tumefaciens - genetics</subject><subject>Agrobacterium tumefaciens - metabolism</subject><subject>Amino Acid Oxidoreductases - genetics</subject><subject>Amino Acid Oxidoreductases - metabolism</subject><subject>Arabidopsis - genetics</subject><subject>Biological and medical sciences</subject><subject>double‐stranded RNA</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Silencing</subject><subject>inverted repeat</subject><subject>Lycopersicon esculentum - genetics</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>nos</subject><subject>Plants, Genetically Modified</subject><subject>Plasmids - genetics</subject><subject>Polygalacturonase - genetics</subject><subject>Polygalacturonase - metabolism</subject><subject>Repetitive Sequences, Nucleic Acid - genetics</subject><subject>RNAi</subject><subject>siRNA</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUFu1DAUhi0EotPCFZA3sCKpHcd2vGCBKlpaVYJFkdhZtvOcZJSJBzuBzq5H6Fk4Uk9Cwgx0CStb_r_nZ78PIUxJTkkpTtc5ZYJnjLKveUEIywkVXOW3T9Dqb_AUrYgSJJMlLY7QcUprQqhkonyOjmghiCKcrNB4OXyHOEKNI2zBjDh4bHALI8TQhyZMCbOHu58Pd_fTMEYzpN7s4aYLA_Yh4rZr2jkG7zvXweB2b_8cjW0MU9NupxE3MABOXT_n3dC8QM-86RO8PKwn6Mv5h5uzj9n1p4vLs_fXmSulUFnJiGdcCC4KX9TcKOFsYW1tBAfniOTOgjBGCFkrZpkz1rLKK0W9q8Aqx07Qm_292xi-TZBGvemSg743A8w_05IRWZSl-CdIK0lLocgMVnvQxZBSBK-3sduYuNOU6EWNXuvFgF4M6EWN_q1G386lrw49JruB-rHw4GIGXh8Ak5zp_Txt16VHruRS0YrN3Ls992Oe5-6_H6BvPl8tO_YLMOSw2Q</recordid><startdate>200302</startdate><enddate>200302</enddate><creator>Brummell, David A.</creator><creator>Balint‐Kurti, Peter J.</creator><creator>Harpster, Mark H.</creator><creator>Palys, Joseph M.</creator><creator>Oeller, Paul W.</creator><creator>Gutterson, Neal</creator><general>Blackwell Science Ltd</general><general>Blackwell Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>200302</creationdate><title>Inverted repeat of a heterologous 3′‐untranslated region for high‐efficiency, high‐throughput gene silencing</title><author>Brummell, David A. ; Balint‐Kurti, Peter J. ; Harpster, Mark H. ; Palys, Joseph M. ; Oeller, Paul W. ; Gutterson, Neal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4769-430f3566562f2d5a96cb2bbda65ecc075cbe6aa667d93b3cabb38f991fc8eb9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>3' Untranslated Regions - genetics</topic><topic>Agrobacterium tumefaciens - genetics</topic><topic>Agrobacterium tumefaciens - metabolism</topic><topic>Amino Acid Oxidoreductases - genetics</topic><topic>Amino Acid Oxidoreductases - metabolism</topic><topic>Arabidopsis - genetics</topic><topic>Biological and medical sciences</topic><topic>double‐stranded RNA</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Silencing</topic><topic>inverted repeat</topic><topic>Lycopersicon esculentum - genetics</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>nos</topic><topic>Plants, Genetically Modified</topic><topic>Plasmids - genetics</topic><topic>Polygalacturonase - genetics</topic><topic>Polygalacturonase - metabolism</topic><topic>Repetitive Sequences, Nucleic Acid - genetics</topic><topic>RNAi</topic><topic>siRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brummell, David A.</creatorcontrib><creatorcontrib>Balint‐Kurti, Peter J.</creatorcontrib><creatorcontrib>Harpster, Mark H.</creatorcontrib><creatorcontrib>Palys, Joseph M.</creatorcontrib><creatorcontrib>Oeller, Paul W.</creatorcontrib><creatorcontrib>Gutterson, Neal</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brummell, David A.</au><au>Balint‐Kurti, Peter J.</au><au>Harpster, Mark H.</au><au>Palys, Joseph M.</au><au>Oeller, Paul W.</au><au>Gutterson, Neal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverted repeat of a heterologous 3′‐untranslated region for high‐efficiency, high‐throughput gene silencing</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2003-02</date><risdate>2003</risdate><volume>33</volume><issue>4</issue><spage>793</spage><epage>800</epage><pages>793-800</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary This report describes a method for the easy generation of inverted repeat constructs for the silencing of genes of unknown sequence which is applicable to high‐throughput studies. This improved procedure for high‐efficiency gene silencing is specific for a target gene, but does not require inverted repeat DNA of the target gene in the construct. The method employs an inverted repeat of the 3′‐untranslated region (3′‐UTR) of a heterologous gene, and has been demonstrated using the 3′‐UTR region of the nopaline synthase (nos) gene from Agrobacterium tumefaciens, which is often used as the 3′‐UTR for transgene constructs. In a population of independent tomato primary transformants harboring a stably integrated polygalacturonase (PG) transgene driven by a constitutive promoter and linked to an inverted repeat of the nos 3′‐UTR, 51 of 56 primary transformants (91% of the population) showed highly effective post‐transcriptional silencing of the PG gene, with PG mRNA abundance in ripe fruit reduced by 98% or more. The method was also effective in Arabidopsis, where two different, relatively uncharacterized plant transcription factors were also targeted effectively. This method has the advantage of ease and rapidity in preparation of the constructs, since a gene of interest can be inserted into a binary vector already containing the promoter and the inverted nos domain in a single‐cloning step, and does not require any knowledge of the DNA sequence. The approach is suitable for high‐throughput gene silencing studies, where it is necessary to investigate the function of hundreds to thousands of uncharacterized genes.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>12609050</pmid><doi>10.1046/j.1365-313X.2003.01659.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2003-02, Vol.33 (4), p.793-800
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_73072446
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; IngentaConnect Free/Open Access Journals
subjects 3' Untranslated Regions - genetics
Agrobacterium tumefaciens - genetics
Agrobacterium tumefaciens - metabolism
Amino Acid Oxidoreductases - genetics
Amino Acid Oxidoreductases - metabolism
Arabidopsis - genetics
Biological and medical sciences
double‐stranded RNA
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Silencing
inverted repeat
Lycopersicon esculentum - genetics
Molecular and cellular biology
Molecular genetics
nos
Plants, Genetically Modified
Plasmids - genetics
Polygalacturonase - genetics
Polygalacturonase - metabolism
Repetitive Sequences, Nucleic Acid - genetics
RNAi
siRNA
title Inverted repeat of a heterologous 3′‐untranslated region for high‐efficiency, high‐throughput gene silencing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A08%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverted%20repeat%20of%20a%20heterologous%203%E2%80%B2%E2%80%90untranslated%20region%20for%20high%E2%80%90efficiency,%20high%E2%80%90throughput%20gene%20silencing&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Brummell,%20David%20A.&rft.date=2003-02&rft.volume=33&rft.issue=4&rft.spage=793&rft.epage=800&rft.pages=793-800&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1046/j.1365-313X.2003.01659.x&rft_dat=%3Cproquest_cross%3E73072446%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18714690&rft_id=info:pmid/12609050&rfr_iscdi=true