The Synaptic Complex of RecA Protein Participates in Hybridization and Inverse Strand Exchange Reactions

RecA protein catalyzes strand exchange between homologous single-stranded and double-stranded DNAs. In the presence of ATPγS, the post-strand exchange synaptic complex is a stable end product that can be studied. Here we ask whether such complexes can hybridize to or exchange with DNA, 2‘-OMe RNA, P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2003-03, Vol.42 (9), p.2643-2655
Hauptverfasser: Gamper, Howard B, Nulf, Christopher J, Corey, David R, Kmiec, Eric B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2655
container_issue 9
container_start_page 2643
container_title Biochemistry (Easton)
container_volume 42
creator Gamper, Howard B
Nulf, Christopher J
Corey, David R
Kmiec, Eric B
description RecA protein catalyzes strand exchange between homologous single-stranded and double-stranded DNAs. In the presence of ATPγS, the post-strand exchange synaptic complex is a stable end product that can be studied. Here we ask whether such complexes can hybridize to or exchange with DNA, 2‘-OMe RNA, PNA, or LNA oligonucleotides. Using a gel mobility shift assay, we show that the displaced strand of a 45 bp synaptic complex can hybridize to complementary oligonucleotides with different backbones to form a four-stranded (double D-loop) joint that survives removal of the RecA protein. This hybridization reaction, which confirms the single-stranded character of the displaced strand in a synaptic complex, might initiate recombination-dependent DNA replication if it occurs in vivo. We also show that either strand of the heteroduplex in a 30 bp synaptic complex can be replaced with a homologous DNA oligonucleotide in a strand exchange reaction that is mediated by the RecA filament. Consistent with the important role that deoxyribose plays in strand exchange, oligonucleotides with non-DNA backbones did not participate in this reaction. The hybridization and strand exchange reactions reported here demonstrate that short synaptic complexes are dynamic structures even in the presence of ATPγS.
doi_str_mv 10.1021/bi0205202
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73068541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73068541</sourcerecordid><originalsourceid>FETCH-LOGICAL-a380t-4a791f0d529f21efb6a5c742e5a2d86549b5c9b8ec26d03bce1b87457223a7383</originalsourceid><addsrcrecordid>eNqFkE9vEzEUxC1ERUPhwBdAvlCJwxbb6z_rY0lbWqmIiIaz9db7lrgku4u9QQmfHq8SlQsSp9FofpqnN4S84eyCM8E_1IEJpgQTz8iMZy2kteo5mTHGdCGsZqfkZUqP2Upm5AtyyoXmkis7I6vlCunDvoNhDJ7O-82wxh3tW_oV_SVdxH7E0NEFxByHAUZMNPvbfR1DE37DGPqOQtfQu-4XxpSrxjjZ651fQfcdcw34CUqvyEkL64Svj3pGvt1cL-e3xf2XT3fzy_sCyoqNhQRjecsaJWwrOLa1BuWNFKhANJVW0tbK27pCL3TDytojrysjlRGiBFNW5Rk5P_QOsf-5xTS6TUge12vosN8mZ0qmKyX5f0FuBa-smcD3B9DHPqWIrRti2EDcO87ctL972j-zb4-l23qDzV_yOHgGigMQ0oi7pxziD6dNaZRbLh4cE1f6I_t846Z33h148Mk99tvY5fH-cfgPpDiZ-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19218971</pqid></control><display><type>article</type><title>The Synaptic Complex of RecA Protein Participates in Hybridization and Inverse Strand Exchange Reactions</title><source>MEDLINE</source><source>ACS Publications</source><creator>Gamper, Howard B ; Nulf, Christopher J ; Corey, David R ; Kmiec, Eric B</creator><creatorcontrib>Gamper, Howard B ; Nulf, Christopher J ; Corey, David R ; Kmiec, Eric B</creatorcontrib><description>RecA protein catalyzes strand exchange between homologous single-stranded and double-stranded DNAs. In the presence of ATPγS, the post-strand exchange synaptic complex is a stable end product that can be studied. Here we ask whether such complexes can hybridize to or exchange with DNA, 2‘-OMe RNA, PNA, or LNA oligonucleotides. Using a gel mobility shift assay, we show that the displaced strand of a 45 bp synaptic complex can hybridize to complementary oligonucleotides with different backbones to form a four-stranded (double D-loop) joint that survives removal of the RecA protein. This hybridization reaction, which confirms the single-stranded character of the displaced strand in a synaptic complex, might initiate recombination-dependent DNA replication if it occurs in vivo. We also show that either strand of the heteroduplex in a 30 bp synaptic complex can be replaced with a homologous DNA oligonucleotide in a strand exchange reaction that is mediated by the RecA filament. Consistent with the important role that deoxyribose plays in strand exchange, oligonucleotides with non-DNA backbones did not participate in this reaction. The hybridization and strand exchange reactions reported here demonstrate that short synaptic complexes are dynamic structures even in the presence of ATPγS.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi0205202</identifier><identifier>PMID: 12614159</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adenosine Triphosphate - analogs &amp; derivatives ; Adenosine Triphosphate - chemistry ; DNA, Single-Stranded - chemistry ; Electrophoresis, Polyacrylamide Gel ; Globins - chemistry ; Globins - genetics ; Humans ; Kanamycin Kinase - chemistry ; Kanamycin Kinase - genetics ; Nucleic Acid Conformation ; Nucleic Acid Heteroduplexes - chemistry ; Nucleic Acid Hybridization ; Oligonucleotides - chemistry ; Rec A Recombinases - chemistry ; Recombination, Genetic ; RNA Probes - chemistry ; Sequence Homology, Nucleic Acid</subject><ispartof>Biochemistry (Easton), 2003-03, Vol.42 (9), p.2643-2655</ispartof><rights>Copyright © 2003 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a380t-4a791f0d529f21efb6a5c742e5a2d86549b5c9b8ec26d03bce1b87457223a7383</citedby><cites>FETCH-LOGICAL-a380t-4a791f0d529f21efb6a5c742e5a2d86549b5c9b8ec26d03bce1b87457223a7383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi0205202$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi0205202$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12614159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gamper, Howard B</creatorcontrib><creatorcontrib>Nulf, Christopher J</creatorcontrib><creatorcontrib>Corey, David R</creatorcontrib><creatorcontrib>Kmiec, Eric B</creatorcontrib><title>The Synaptic Complex of RecA Protein Participates in Hybridization and Inverse Strand Exchange Reactions</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>RecA protein catalyzes strand exchange between homologous single-stranded and double-stranded DNAs. In the presence of ATPγS, the post-strand exchange synaptic complex is a stable end product that can be studied. Here we ask whether such complexes can hybridize to or exchange with DNA, 2‘-OMe RNA, PNA, or LNA oligonucleotides. Using a gel mobility shift assay, we show that the displaced strand of a 45 bp synaptic complex can hybridize to complementary oligonucleotides with different backbones to form a four-stranded (double D-loop) joint that survives removal of the RecA protein. This hybridization reaction, which confirms the single-stranded character of the displaced strand in a synaptic complex, might initiate recombination-dependent DNA replication if it occurs in vivo. We also show that either strand of the heteroduplex in a 30 bp synaptic complex can be replaced with a homologous DNA oligonucleotide in a strand exchange reaction that is mediated by the RecA filament. Consistent with the important role that deoxyribose plays in strand exchange, oligonucleotides with non-DNA backbones did not participate in this reaction. The hybridization and strand exchange reactions reported here demonstrate that short synaptic complexes are dynamic structures even in the presence of ATPγS.</description><subject>Adenosine Triphosphate - analogs &amp; derivatives</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Globins - chemistry</subject><subject>Globins - genetics</subject><subject>Humans</subject><subject>Kanamycin Kinase - chemistry</subject><subject>Kanamycin Kinase - genetics</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic Acid Heteroduplexes - chemistry</subject><subject>Nucleic Acid Hybridization</subject><subject>Oligonucleotides - chemistry</subject><subject>Rec A Recombinases - chemistry</subject><subject>Recombination, Genetic</subject><subject>RNA Probes - chemistry</subject><subject>Sequence Homology, Nucleic Acid</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE9vEzEUxC1ERUPhwBdAvlCJwxbb6z_rY0lbWqmIiIaz9db7lrgku4u9QQmfHq8SlQsSp9FofpqnN4S84eyCM8E_1IEJpgQTz8iMZy2kteo5mTHGdCGsZqfkZUqP2Upm5AtyyoXmkis7I6vlCunDvoNhDJ7O-82wxh3tW_oV_SVdxH7E0NEFxByHAUZMNPvbfR1DE37DGPqOQtfQu-4XxpSrxjjZ651fQfcdcw34CUqvyEkL64Svj3pGvt1cL-e3xf2XT3fzy_sCyoqNhQRjecsaJWwrOLa1BuWNFKhANJVW0tbK27pCL3TDytojrysjlRGiBFNW5Rk5P_QOsf-5xTS6TUge12vosN8mZ0qmKyX5f0FuBa-smcD3B9DHPqWIrRti2EDcO87ctL972j-zb4-l23qDzV_yOHgGigMQ0oi7pxziD6dNaZRbLh4cE1f6I_t846Z33h148Mk99tvY5fH-cfgPpDiZ-A</recordid><startdate>20030311</startdate><enddate>20030311</enddate><creator>Gamper, Howard B</creator><creator>Nulf, Christopher J</creator><creator>Corey, David R</creator><creator>Kmiec, Eric B</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>20030311</creationdate><title>The Synaptic Complex of RecA Protein Participates in Hybridization and Inverse Strand Exchange Reactions</title><author>Gamper, Howard B ; Nulf, Christopher J ; Corey, David R ; Kmiec, Eric B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a380t-4a791f0d529f21efb6a5c742e5a2d86549b5c9b8ec26d03bce1b87457223a7383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adenosine Triphosphate - analogs &amp; derivatives</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Globins - chemistry</topic><topic>Globins - genetics</topic><topic>Humans</topic><topic>Kanamycin Kinase - chemistry</topic><topic>Kanamycin Kinase - genetics</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic Acid Heteroduplexes - chemistry</topic><topic>Nucleic Acid Hybridization</topic><topic>Oligonucleotides - chemistry</topic><topic>Rec A Recombinases - chemistry</topic><topic>Recombination, Genetic</topic><topic>RNA Probes - chemistry</topic><topic>Sequence Homology, Nucleic Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gamper, Howard B</creatorcontrib><creatorcontrib>Nulf, Christopher J</creatorcontrib><creatorcontrib>Corey, David R</creatorcontrib><creatorcontrib>Kmiec, Eric B</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gamper, Howard B</au><au>Nulf, Christopher J</au><au>Corey, David R</au><au>Kmiec, Eric B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Synaptic Complex of RecA Protein Participates in Hybridization and Inverse Strand Exchange Reactions</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2003-03-11</date><risdate>2003</risdate><volume>42</volume><issue>9</issue><spage>2643</spage><epage>2655</epage><pages>2643-2655</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>RecA protein catalyzes strand exchange between homologous single-stranded and double-stranded DNAs. In the presence of ATPγS, the post-strand exchange synaptic complex is a stable end product that can be studied. Here we ask whether such complexes can hybridize to or exchange with DNA, 2‘-OMe RNA, PNA, or LNA oligonucleotides. Using a gel mobility shift assay, we show that the displaced strand of a 45 bp synaptic complex can hybridize to complementary oligonucleotides with different backbones to form a four-stranded (double D-loop) joint that survives removal of the RecA protein. This hybridization reaction, which confirms the single-stranded character of the displaced strand in a synaptic complex, might initiate recombination-dependent DNA replication if it occurs in vivo. We also show that either strand of the heteroduplex in a 30 bp synaptic complex can be replaced with a homologous DNA oligonucleotide in a strand exchange reaction that is mediated by the RecA filament. Consistent with the important role that deoxyribose plays in strand exchange, oligonucleotides with non-DNA backbones did not participate in this reaction. The hybridization and strand exchange reactions reported here demonstrate that short synaptic complexes are dynamic structures even in the presence of ATPγS.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>12614159</pmid><doi>10.1021/bi0205202</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2003-03, Vol.42 (9), p.2643-2655
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_73068541
source MEDLINE; ACS Publications
subjects Adenosine Triphosphate - analogs & derivatives
Adenosine Triphosphate - chemistry
DNA, Single-Stranded - chemistry
Electrophoresis, Polyacrylamide Gel
Globins - chemistry
Globins - genetics
Humans
Kanamycin Kinase - chemistry
Kanamycin Kinase - genetics
Nucleic Acid Conformation
Nucleic Acid Heteroduplexes - chemistry
Nucleic Acid Hybridization
Oligonucleotides - chemistry
Rec A Recombinases - chemistry
Recombination, Genetic
RNA Probes - chemistry
Sequence Homology, Nucleic Acid
title The Synaptic Complex of RecA Protein Participates in Hybridization and Inverse Strand Exchange Reactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Synaptic%20Complex%20of%20RecA%20Protein%20Participates%20in%20Hybridization%20and%20Inverse%20Strand%20Exchange%20Reactions&rft.jtitle=Biochemistry%20(Easton)&rft.au=Gamper,%20Howard%20B&rft.date=2003-03-11&rft.volume=42&rft.issue=9&rft.spage=2643&rft.epage=2655&rft.pages=2643-2655&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi0205202&rft_dat=%3Cproquest_cross%3E73068541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19218971&rft_id=info:pmid/12614159&rfr_iscdi=true