The Synaptic Complex of RecA Protein Participates in Hybridization and Inverse Strand Exchange Reactions
RecA protein catalyzes strand exchange between homologous single-stranded and double-stranded DNAs. In the presence of ATPγS, the post-strand exchange synaptic complex is a stable end product that can be studied. Here we ask whether such complexes can hybridize to or exchange with DNA, 2‘-OMe RNA, P...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2003-03, Vol.42 (9), p.2643-2655 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2655 |
---|---|
container_issue | 9 |
container_start_page | 2643 |
container_title | Biochemistry (Easton) |
container_volume | 42 |
creator | Gamper, Howard B Nulf, Christopher J Corey, David R Kmiec, Eric B |
description | RecA protein catalyzes strand exchange between homologous single-stranded and double-stranded DNAs. In the presence of ATPγS, the post-strand exchange synaptic complex is a stable end product that can be studied. Here we ask whether such complexes can hybridize to or exchange with DNA, 2‘-OMe RNA, PNA, or LNA oligonucleotides. Using a gel mobility shift assay, we show that the displaced strand of a 45 bp synaptic complex can hybridize to complementary oligonucleotides with different backbones to form a four-stranded (double D-loop) joint that survives removal of the RecA protein. This hybridization reaction, which confirms the single-stranded character of the displaced strand in a synaptic complex, might initiate recombination-dependent DNA replication if it occurs in vivo. We also show that either strand of the heteroduplex in a 30 bp synaptic complex can be replaced with a homologous DNA oligonucleotide in a strand exchange reaction that is mediated by the RecA filament. Consistent with the important role that deoxyribose plays in strand exchange, oligonucleotides with non-DNA backbones did not participate in this reaction. The hybridization and strand exchange reactions reported here demonstrate that short synaptic complexes are dynamic structures even in the presence of ATPγS. |
doi_str_mv | 10.1021/bi0205202 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73068541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73068541</sourcerecordid><originalsourceid>FETCH-LOGICAL-a380t-4a791f0d529f21efb6a5c742e5a2d86549b5c9b8ec26d03bce1b87457223a7383</originalsourceid><addsrcrecordid>eNqFkE9vEzEUxC1ERUPhwBdAvlCJwxbb6z_rY0lbWqmIiIaz9db7lrgku4u9QQmfHq8SlQsSp9FofpqnN4S84eyCM8E_1IEJpgQTz8iMZy2kteo5mTHGdCGsZqfkZUqP2Upm5AtyyoXmkis7I6vlCunDvoNhDJ7O-82wxh3tW_oV_SVdxH7E0NEFxByHAUZMNPvbfR1DE37DGPqOQtfQu-4XxpSrxjjZ651fQfcdcw34CUqvyEkL64Svj3pGvt1cL-e3xf2XT3fzy_sCyoqNhQRjecsaJWwrOLa1BuWNFKhANJVW0tbK27pCL3TDytojrysjlRGiBFNW5Rk5P_QOsf-5xTS6TUge12vosN8mZ0qmKyX5f0FuBa-smcD3B9DHPqWIrRti2EDcO87ctL972j-zb4-l23qDzV_yOHgGigMQ0oi7pxziD6dNaZRbLh4cE1f6I_t846Z33h148Mk99tvY5fH-cfgPpDiZ-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19218971</pqid></control><display><type>article</type><title>The Synaptic Complex of RecA Protein Participates in Hybridization and Inverse Strand Exchange Reactions</title><source>MEDLINE</source><source>ACS Publications</source><creator>Gamper, Howard B ; Nulf, Christopher J ; Corey, David R ; Kmiec, Eric B</creator><creatorcontrib>Gamper, Howard B ; Nulf, Christopher J ; Corey, David R ; Kmiec, Eric B</creatorcontrib><description>RecA protein catalyzes strand exchange between homologous single-stranded and double-stranded DNAs. In the presence of ATPγS, the post-strand exchange synaptic complex is a stable end product that can be studied. Here we ask whether such complexes can hybridize to or exchange with DNA, 2‘-OMe RNA, PNA, or LNA oligonucleotides. Using a gel mobility shift assay, we show that the displaced strand of a 45 bp synaptic complex can hybridize to complementary oligonucleotides with different backbones to form a four-stranded (double D-loop) joint that survives removal of the RecA protein. This hybridization reaction, which confirms the single-stranded character of the displaced strand in a synaptic complex, might initiate recombination-dependent DNA replication if it occurs in vivo. We also show that either strand of the heteroduplex in a 30 bp synaptic complex can be replaced with a homologous DNA oligonucleotide in a strand exchange reaction that is mediated by the RecA filament. Consistent with the important role that deoxyribose plays in strand exchange, oligonucleotides with non-DNA backbones did not participate in this reaction. The hybridization and strand exchange reactions reported here demonstrate that short synaptic complexes are dynamic structures even in the presence of ATPγS.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi0205202</identifier><identifier>PMID: 12614159</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adenosine Triphosphate - analogs & derivatives ; Adenosine Triphosphate - chemistry ; DNA, Single-Stranded - chemistry ; Electrophoresis, Polyacrylamide Gel ; Globins - chemistry ; Globins - genetics ; Humans ; Kanamycin Kinase - chemistry ; Kanamycin Kinase - genetics ; Nucleic Acid Conformation ; Nucleic Acid Heteroduplexes - chemistry ; Nucleic Acid Hybridization ; Oligonucleotides - chemistry ; Rec A Recombinases - chemistry ; Recombination, Genetic ; RNA Probes - chemistry ; Sequence Homology, Nucleic Acid</subject><ispartof>Biochemistry (Easton), 2003-03, Vol.42 (9), p.2643-2655</ispartof><rights>Copyright © 2003 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a380t-4a791f0d529f21efb6a5c742e5a2d86549b5c9b8ec26d03bce1b87457223a7383</citedby><cites>FETCH-LOGICAL-a380t-4a791f0d529f21efb6a5c742e5a2d86549b5c9b8ec26d03bce1b87457223a7383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi0205202$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi0205202$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12614159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gamper, Howard B</creatorcontrib><creatorcontrib>Nulf, Christopher J</creatorcontrib><creatorcontrib>Corey, David R</creatorcontrib><creatorcontrib>Kmiec, Eric B</creatorcontrib><title>The Synaptic Complex of RecA Protein Participates in Hybridization and Inverse Strand Exchange Reactions</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>RecA protein catalyzes strand exchange between homologous single-stranded and double-stranded DNAs. In the presence of ATPγS, the post-strand exchange synaptic complex is a stable end product that can be studied. Here we ask whether such complexes can hybridize to or exchange with DNA, 2‘-OMe RNA, PNA, or LNA oligonucleotides. Using a gel mobility shift assay, we show that the displaced strand of a 45 bp synaptic complex can hybridize to complementary oligonucleotides with different backbones to form a four-stranded (double D-loop) joint that survives removal of the RecA protein. This hybridization reaction, which confirms the single-stranded character of the displaced strand in a synaptic complex, might initiate recombination-dependent DNA replication if it occurs in vivo. We also show that either strand of the heteroduplex in a 30 bp synaptic complex can be replaced with a homologous DNA oligonucleotide in a strand exchange reaction that is mediated by the RecA filament. Consistent with the important role that deoxyribose plays in strand exchange, oligonucleotides with non-DNA backbones did not participate in this reaction. The hybridization and strand exchange reactions reported here demonstrate that short synaptic complexes are dynamic structures even in the presence of ATPγS.</description><subject>Adenosine Triphosphate - analogs & derivatives</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Globins - chemistry</subject><subject>Globins - genetics</subject><subject>Humans</subject><subject>Kanamycin Kinase - chemistry</subject><subject>Kanamycin Kinase - genetics</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic Acid Heteroduplexes - chemistry</subject><subject>Nucleic Acid Hybridization</subject><subject>Oligonucleotides - chemistry</subject><subject>Rec A Recombinases - chemistry</subject><subject>Recombination, Genetic</subject><subject>RNA Probes - chemistry</subject><subject>Sequence Homology, Nucleic Acid</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE9vEzEUxC1ERUPhwBdAvlCJwxbb6z_rY0lbWqmIiIaz9db7lrgku4u9QQmfHq8SlQsSp9FofpqnN4S84eyCM8E_1IEJpgQTz8iMZy2kteo5mTHGdCGsZqfkZUqP2Upm5AtyyoXmkis7I6vlCunDvoNhDJ7O-82wxh3tW_oV_SVdxH7E0NEFxByHAUZMNPvbfR1DE37DGPqOQtfQu-4XxpSrxjjZ651fQfcdcw34CUqvyEkL64Svj3pGvt1cL-e3xf2XT3fzy_sCyoqNhQRjecsaJWwrOLa1BuWNFKhANJVW0tbK27pCL3TDytojrysjlRGiBFNW5Rk5P_QOsf-5xTS6TUge12vosN8mZ0qmKyX5f0FuBa-smcD3B9DHPqWIrRti2EDcO87ctL972j-zb4-l23qDzV_yOHgGigMQ0oi7pxziD6dNaZRbLh4cE1f6I_t846Z33h148Mk99tvY5fH-cfgPpDiZ-A</recordid><startdate>20030311</startdate><enddate>20030311</enddate><creator>Gamper, Howard B</creator><creator>Nulf, Christopher J</creator><creator>Corey, David R</creator><creator>Kmiec, Eric B</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>20030311</creationdate><title>The Synaptic Complex of RecA Protein Participates in Hybridization and Inverse Strand Exchange Reactions</title><author>Gamper, Howard B ; Nulf, Christopher J ; Corey, David R ; Kmiec, Eric B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a380t-4a791f0d529f21efb6a5c742e5a2d86549b5c9b8ec26d03bce1b87457223a7383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adenosine Triphosphate - analogs & derivatives</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Globins - chemistry</topic><topic>Globins - genetics</topic><topic>Humans</topic><topic>Kanamycin Kinase - chemistry</topic><topic>Kanamycin Kinase - genetics</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic Acid Heteroduplexes - chemistry</topic><topic>Nucleic Acid Hybridization</topic><topic>Oligonucleotides - chemistry</topic><topic>Rec A Recombinases - chemistry</topic><topic>Recombination, Genetic</topic><topic>RNA Probes - chemistry</topic><topic>Sequence Homology, Nucleic Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gamper, Howard B</creatorcontrib><creatorcontrib>Nulf, Christopher J</creatorcontrib><creatorcontrib>Corey, David R</creatorcontrib><creatorcontrib>Kmiec, Eric B</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gamper, Howard B</au><au>Nulf, Christopher J</au><au>Corey, David R</au><au>Kmiec, Eric B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Synaptic Complex of RecA Protein Participates in Hybridization and Inverse Strand Exchange Reactions</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2003-03-11</date><risdate>2003</risdate><volume>42</volume><issue>9</issue><spage>2643</spage><epage>2655</epage><pages>2643-2655</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>RecA protein catalyzes strand exchange between homologous single-stranded and double-stranded DNAs. In the presence of ATPγS, the post-strand exchange synaptic complex is a stable end product that can be studied. Here we ask whether such complexes can hybridize to or exchange with DNA, 2‘-OMe RNA, PNA, or LNA oligonucleotides. Using a gel mobility shift assay, we show that the displaced strand of a 45 bp synaptic complex can hybridize to complementary oligonucleotides with different backbones to form a four-stranded (double D-loop) joint that survives removal of the RecA protein. This hybridization reaction, which confirms the single-stranded character of the displaced strand in a synaptic complex, might initiate recombination-dependent DNA replication if it occurs in vivo. We also show that either strand of the heteroduplex in a 30 bp synaptic complex can be replaced with a homologous DNA oligonucleotide in a strand exchange reaction that is mediated by the RecA filament. Consistent with the important role that deoxyribose plays in strand exchange, oligonucleotides with non-DNA backbones did not participate in this reaction. The hybridization and strand exchange reactions reported here demonstrate that short synaptic complexes are dynamic structures even in the presence of ATPγS.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>12614159</pmid><doi>10.1021/bi0205202</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2003-03, Vol.42 (9), p.2643-2655 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_proquest_miscellaneous_73068541 |
source | MEDLINE; ACS Publications |
subjects | Adenosine Triphosphate - analogs & derivatives Adenosine Triphosphate - chemistry DNA, Single-Stranded - chemistry Electrophoresis, Polyacrylamide Gel Globins - chemistry Globins - genetics Humans Kanamycin Kinase - chemistry Kanamycin Kinase - genetics Nucleic Acid Conformation Nucleic Acid Heteroduplexes - chemistry Nucleic Acid Hybridization Oligonucleotides - chemistry Rec A Recombinases - chemistry Recombination, Genetic RNA Probes - chemistry Sequence Homology, Nucleic Acid |
title | The Synaptic Complex of RecA Protein Participates in Hybridization and Inverse Strand Exchange Reactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Synaptic%20Complex%20of%20RecA%20Protein%20Participates%20in%20Hybridization%20and%20Inverse%20Strand%20Exchange%20Reactions&rft.jtitle=Biochemistry%20(Easton)&rft.au=Gamper,%20Howard%20B&rft.date=2003-03-11&rft.volume=42&rft.issue=9&rft.spage=2643&rft.epage=2655&rft.pages=2643-2655&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi0205202&rft_dat=%3Cproquest_cross%3E73068541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19218971&rft_id=info:pmid/12614159&rfr_iscdi=true |