Deformation-based surface morphometry applied to gray matter deformation
We present a unified statistical approach to deformation-based morphometry applied to the cortical surface. The cerebral cortex has the topology of a 2D highly convoluted sheet. As the brain develops over time, the cortical surface area, thickness, curvature, and total gray matter volume change. It...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2003-02, Vol.18 (2), p.198-213 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 213 |
---|---|
container_issue | 2 |
container_start_page | 198 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 18 |
creator | Chung, Moo K. Worsley, Keith J. Robbins, Steve Paus, Tomáš Taylor, Jonathan Giedd, Jay N. Rapoport, Judith L. Evans, Alan C. |
description | We present a unified statistical approach to deformation-based morphometry applied to the cortical surface. The cerebral cortex has the topology of a 2D highly convoluted sheet. As the brain develops over time, the cortical surface area, thickness, curvature, and total gray matter volume change. It is highly likely that such age-related surface changes are not uniform. By measuring how such surface metrics change over time, the regions of the most rapid structural changes can be localized. We avoided using surface flattening, which distorts the inherent geometry of the cortex in our analysis and it is only used in visualization. To increase the signal to noise ratio, diffusion smoothing, which generalizes Gaussian kernel smoothing to an arbitrary curved cortical surface, has been developed and applied to surface data. Afterward, statistical inference on the cortical surface will be performed via random fields theory. As an illustration, we demonstrate how this new surface-based morphometry can be applied in localizing the cortical regions of the gray matter tissue growth and loss in the brain images longitudinally collected in the group of children and adolescents. |
doi_str_mv | 10.1016/S1053-8119(02)00017-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73031181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811902000174</els_id><sourcerecordid>73031181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-c504e6e7109d75faa363bf3338e221325b525f4b89247d52111465f1a9def85f3</originalsourceid><addsrcrecordid>eNqFkMtKxTAQhoMo3h9BKQiii2omyfSyEvEOB1yo65C2E62cntSkFc7bm3MBwY2byUC-f2b4GDsCfgEcsssX4CjTAqA84-Kccw55qjbYLvAS0xJzsbno18gO2wvhM0IlqGKb7YDAEiHPdtnjLVnnOzO0bpZWJlCThNFbU1PSOd9_uI4GP09M30_b-De45N2beRIDA_mk-Q0fsC1rpoEO1-8-e7u_e715TCfPD08315O0RlRDrFxRRnk8s8nRGiMzWVkpZUFCgBRYoUCrqqIUKm9QAIDK0IIp464Crdxnp6u5vXdfI4VBd22oaTo1M3Jj0LnkEqCACJ78AT_d6GfxNg3IMywLBRgpXFG1dyF4srr3bWf8XAPXC9F6KVovLGou9FK0VjF3vJ4-Vh01v6m12QhcrQCKMr5b8jrULc1qalpP9aAb1_6z4gcq1Yvx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506598415</pqid></control><display><type>article</type><title>Deformation-based surface morphometry applied to gray matter deformation</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Chung, Moo K. ; Worsley, Keith J. ; Robbins, Steve ; Paus, Tomáš ; Taylor, Jonathan ; Giedd, Jay N. ; Rapoport, Judith L. ; Evans, Alan C.</creator><creatorcontrib>Chung, Moo K. ; Worsley, Keith J. ; Robbins, Steve ; Paus, Tomáš ; Taylor, Jonathan ; Giedd, Jay N. ; Rapoport, Judith L. ; Evans, Alan C.</creatorcontrib><description>We present a unified statistical approach to deformation-based morphometry applied to the cortical surface. The cerebral cortex has the topology of a 2D highly convoluted sheet. As the brain develops over time, the cortical surface area, thickness, curvature, and total gray matter volume change. It is highly likely that such age-related surface changes are not uniform. By measuring how such surface metrics change over time, the regions of the most rapid structural changes can be localized. We avoided using surface flattening, which distorts the inherent geometry of the cortex in our analysis and it is only used in visualization. To increase the signal to noise ratio, diffusion smoothing, which generalizes Gaussian kernel smoothing to an arbitrary curved cortical surface, has been developed and applied to surface data. Afterward, statistical inference on the cortical surface will be performed via random fields theory. As an illustration, we demonstrate how this new surface-based morphometry can be applied in localizing the cortical regions of the gray matter tissue growth and loss in the brain images longitudinally collected in the group of children and adolescents.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/S1053-8119(02)00017-4</identifier><identifier>PMID: 12595176</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adolescent ; Adult ; Age Factors ; Algorithms ; Atrophy ; Brain ; Brain atrophy ; Brain development ; Brain growth ; Cerebral cortex ; Cerebral Cortex - growth & development ; Cerebral Cortex - pathology ; Child ; Computer Simulation ; Cortical surface ; Cortical thickness ; Deformation ; Fluid dynamics ; Humans ; Image Processing, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Magnetic Resonance Imaging - methods ; Morphometry ; Neural networks ; Normal Distribution ; Reference Values ; Software</subject><ispartof>NeuroImage (Orlando, Fla.), 2003-02, Vol.18 (2), p.198-213</ispartof><rights>2002 Elsevier Science (USA)</rights><rights>Copyright Elsevier Limited Feb 1, 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-c504e6e7109d75faa363bf3338e221325b525f4b89247d52111465f1a9def85f3</citedby><cites>FETCH-LOGICAL-c554t-c504e6e7109d75faa363bf3338e221325b525f4b89247d52111465f1a9def85f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1506598415?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000,64390,64392,64394,72474</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12595176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chung, Moo K.</creatorcontrib><creatorcontrib>Worsley, Keith J.</creatorcontrib><creatorcontrib>Robbins, Steve</creatorcontrib><creatorcontrib>Paus, Tomáš</creatorcontrib><creatorcontrib>Taylor, Jonathan</creatorcontrib><creatorcontrib>Giedd, Jay N.</creatorcontrib><creatorcontrib>Rapoport, Judith L.</creatorcontrib><creatorcontrib>Evans, Alan C.</creatorcontrib><title>Deformation-based surface morphometry applied to gray matter deformation</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>We present a unified statistical approach to deformation-based morphometry applied to the cortical surface. The cerebral cortex has the topology of a 2D highly convoluted sheet. As the brain develops over time, the cortical surface area, thickness, curvature, and total gray matter volume change. It is highly likely that such age-related surface changes are not uniform. By measuring how such surface metrics change over time, the regions of the most rapid structural changes can be localized. We avoided using surface flattening, which distorts the inherent geometry of the cortex in our analysis and it is only used in visualization. To increase the signal to noise ratio, diffusion smoothing, which generalizes Gaussian kernel smoothing to an arbitrary curved cortical surface, has been developed and applied to surface data. Afterward, statistical inference on the cortical surface will be performed via random fields theory. As an illustration, we demonstrate how this new surface-based morphometry can be applied in localizing the cortical regions of the gray matter tissue growth and loss in the brain images longitudinally collected in the group of children and adolescents.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Age Factors</subject><subject>Algorithms</subject><subject>Atrophy</subject><subject>Brain</subject><subject>Brain atrophy</subject><subject>Brain development</subject><subject>Brain growth</subject><subject>Cerebral cortex</subject><subject>Cerebral Cortex - growth & development</subject><subject>Cerebral Cortex - pathology</subject><subject>Child</subject><subject>Computer Simulation</subject><subject>Cortical surface</subject><subject>Cortical thickness</subject><subject>Deformation</subject><subject>Fluid dynamics</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Morphometry</subject><subject>Neural networks</subject><subject>Normal Distribution</subject><subject>Reference Values</subject><subject>Software</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkMtKxTAQhoMo3h9BKQiii2omyfSyEvEOB1yo65C2E62cntSkFc7bm3MBwY2byUC-f2b4GDsCfgEcsssX4CjTAqA84-Kccw55qjbYLvAS0xJzsbno18gO2wvhM0IlqGKb7YDAEiHPdtnjLVnnOzO0bpZWJlCThNFbU1PSOd9_uI4GP09M30_b-De45N2beRIDA_mk-Q0fsC1rpoEO1-8-e7u_e715TCfPD08315O0RlRDrFxRRnk8s8nRGiMzWVkpZUFCgBRYoUCrqqIUKm9QAIDK0IIp464Crdxnp6u5vXdfI4VBd22oaTo1M3Jj0LnkEqCACJ78AT_d6GfxNg3IMywLBRgpXFG1dyF4srr3bWf8XAPXC9F6KVovLGou9FK0VjF3vJ4-Vh01v6m12QhcrQCKMr5b8jrULc1qalpP9aAb1_6z4gcq1Yvx</recordid><startdate>20030201</startdate><enddate>20030201</enddate><creator>Chung, Moo K.</creator><creator>Worsley, Keith J.</creator><creator>Robbins, Steve</creator><creator>Paus, Tomáš</creator><creator>Taylor, Jonathan</creator><creator>Giedd, Jay N.</creator><creator>Rapoport, Judith L.</creator><creator>Evans, Alan C.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20030201</creationdate><title>Deformation-based surface morphometry applied to gray matter deformation</title><author>Chung, Moo K. ; Worsley, Keith J. ; Robbins, Steve ; Paus, Tomáš ; Taylor, Jonathan ; Giedd, Jay N. ; Rapoport, Judith L. ; Evans, Alan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-c504e6e7109d75faa363bf3338e221325b525f4b89247d52111465f1a9def85f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Age Factors</topic><topic>Algorithms</topic><topic>Atrophy</topic><topic>Brain</topic><topic>Brain atrophy</topic><topic>Brain development</topic><topic>Brain growth</topic><topic>Cerebral cortex</topic><topic>Cerebral Cortex - growth & development</topic><topic>Cerebral Cortex - pathology</topic><topic>Child</topic><topic>Computer Simulation</topic><topic>Cortical surface</topic><topic>Cortical thickness</topic><topic>Deformation</topic><topic>Fluid dynamics</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Morphometry</topic><topic>Neural networks</topic><topic>Normal Distribution</topic><topic>Reference Values</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, Moo K.</creatorcontrib><creatorcontrib>Worsley, Keith J.</creatorcontrib><creatorcontrib>Robbins, Steve</creatorcontrib><creatorcontrib>Paus, Tomáš</creatorcontrib><creatorcontrib>Taylor, Jonathan</creatorcontrib><creatorcontrib>Giedd, Jay N.</creatorcontrib><creatorcontrib>Rapoport, Judith L.</creatorcontrib><creatorcontrib>Evans, Alan C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, Moo K.</au><au>Worsley, Keith J.</au><au>Robbins, Steve</au><au>Paus, Tomáš</au><au>Taylor, Jonathan</au><au>Giedd, Jay N.</au><au>Rapoport, Judith L.</au><au>Evans, Alan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deformation-based surface morphometry applied to gray matter deformation</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2003-02-01</date><risdate>2003</risdate><volume>18</volume><issue>2</issue><spage>198</spage><epage>213</epage><pages>198-213</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>We present a unified statistical approach to deformation-based morphometry applied to the cortical surface. The cerebral cortex has the topology of a 2D highly convoluted sheet. As the brain develops over time, the cortical surface area, thickness, curvature, and total gray matter volume change. It is highly likely that such age-related surface changes are not uniform. By measuring how such surface metrics change over time, the regions of the most rapid structural changes can be localized. We avoided using surface flattening, which distorts the inherent geometry of the cortex in our analysis and it is only used in visualization. To increase the signal to noise ratio, diffusion smoothing, which generalizes Gaussian kernel smoothing to an arbitrary curved cortical surface, has been developed and applied to surface data. Afterward, statistical inference on the cortical surface will be performed via random fields theory. As an illustration, we demonstrate how this new surface-based morphometry can be applied in localizing the cortical regions of the gray matter tissue growth and loss in the brain images longitudinally collected in the group of children and adolescents.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12595176</pmid><doi>10.1016/S1053-8119(02)00017-4</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2003-02, Vol.18 (2), p.198-213 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_73031181 |
source | MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland |
subjects | Adolescent Adult Age Factors Algorithms Atrophy Brain Brain atrophy Brain development Brain growth Cerebral cortex Cerebral Cortex - growth & development Cerebral Cortex - pathology Child Computer Simulation Cortical surface Cortical thickness Deformation Fluid dynamics Humans Image Processing, Computer-Assisted - methods Imaging, Three-Dimensional - methods Magnetic Resonance Imaging - methods Morphometry Neural networks Normal Distribution Reference Values Software |
title | Deformation-based surface morphometry applied to gray matter deformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deformation-based%20surface%20morphometry%20applied%20to%20gray%20matter%20deformation&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Chung,%20Moo%20K.&rft.date=2003-02-01&rft.volume=18&rft.issue=2&rft.spage=198&rft.epage=213&rft.pages=198-213&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/S1053-8119(02)00017-4&rft_dat=%3Cproquest_cross%3E73031181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506598415&rft_id=info:pmid/12595176&rft_els_id=S1053811902000174&rfr_iscdi=true |