Telomere end-replication problem and cell aging

Since DNA polymerase requires a labile primer to initiate unidirectional 5′-3′ synthesis, some bases at the 3′ end of each template strand are not copied unless special mechanisms bypass this “end-replication” problem. Immortal eukaryotic cells, including transformed human cells, apparently use telo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 1992-06, Vol.225 (4), p.951-960
Hauptverfasser: Levy, Michael Z., Allsopp, Richard C., Futcher, A.Bruce, Greider, Carol W., Harley, Calvin B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 960
container_issue 4
container_start_page 951
container_title Journal of molecular biology
container_volume 225
creator Levy, Michael Z.
Allsopp, Richard C.
Futcher, A.Bruce
Greider, Carol W.
Harley, Calvin B.
description Since DNA polymerase requires a labile primer to initiate unidirectional 5′-3′ synthesis, some bases at the 3′ end of each template strand are not copied unless special mechanisms bypass this “end-replication” problem. Immortal eukaryotic cells, including transformed human cells, apparently use telomerase, an enzyme that elongates telomeres, to overcome incomplete end-replication. However, telomerase has not been detected in normal somatic cells, and these cells lose telomeres with age. Therefore, to better understand the consequences of incomplete replication, we modeled this process for a population of dividing cells. The analysis suggests four things. First, if single-stranded overhangs generated by incomplete replication are not degraded, then mean telomere length decreases by 0.25 of a deletion event per generation. If overhangs are degraded, the rate doubles. Data showing a decrease of about 50 base-pairs per generation in fibroblasts suggest that a full deletion event is 100 to 200 base-pairs. Second, if cells senesce after 80 doublings in vitro, mean telomere length decreases about 4000 base-pairs, but one or more telomeres in each cell will lose significantly more telomeric DNA. A checkpoint for regulation of cell growth may be signalled at that point. Third, variation in telomere length predicted by the model is consistent with the abrupt decline in dividing cells at senescence. Finally, variation in length of terminal restriction fragments is not fully explained by incomplete replication, suggesting significant interchromosomal variation in the length of telomeric or subtelomeric repeats. This analysis, together with assumptions allowing dominance of telomerase inactivation, suggests that telomere loss could explain cell cycle exit in human fibroblasts.
doi_str_mv 10.1016/0022-2836(92)90096-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73023738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0022283692900963</els_id><sourcerecordid>16272168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-4b7ed301a968abbacff48f5b3250f805d62c1fa2b967e50fe4d07064a382f14e3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMo67r6DxR6ENFD3UnSpulFkMUvWPCynkOaTpZIP9akK_jvbe2y3vQ0MPO8w8tDyDmFWwpUzAEYi5nk4jpnNzlALmJ-QKYUZB5LweUhme6RY3ISwjsApDyREzKhgnIJdErmK6zaGj1G2JSxx03ljO5c20Qb3xYV1pFuyshgVUV67Zr1KTmyugp4tpsz8vb4sFo8x8vXp5fF_TI2Cc26OCkyLDlQnQupi0IbaxNp04KzFKyEtBTMUKtZkYsM-xUmJWQgEs0lszRBPiNX49--xscWQ6dqF4YausF2G1TGgfGMy39BKljGqBjAZASNb0PwaNXGu1r7L0VBDULVYEsNtlTO1I9QxfvYxe7_tqix_A2NBvv75e6ug9GV9boxLuyxVFDKZN5jdyOGvbRPh14F47AxWDqPplNl6_7u8Q3Tpo-n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16272168</pqid></control><display><type>article</type><title>Telomere end-replication problem and cell aging</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Levy, Michael Z. ; Allsopp, Richard C. ; Futcher, A.Bruce ; Greider, Carol W. ; Harley, Calvin B.</creator><creatorcontrib>Levy, Michael Z. ; Allsopp, Richard C. ; Futcher, A.Bruce ; Greider, Carol W. ; Harley, Calvin B.</creatorcontrib><description>Since DNA polymerase requires a labile primer to initiate unidirectional 5′-3′ synthesis, some bases at the 3′ end of each template strand are not copied unless special mechanisms bypass this “end-replication” problem. Immortal eukaryotic cells, including transformed human cells, apparently use telomerase, an enzyme that elongates telomeres, to overcome incomplete end-replication. However, telomerase has not been detected in normal somatic cells, and these cells lose telomeres with age. Therefore, to better understand the consequences of incomplete replication, we modeled this process for a population of dividing cells. The analysis suggests four things. First, if single-stranded overhangs generated by incomplete replication are not degraded, then mean telomere length decreases by 0.25 of a deletion event per generation. If overhangs are degraded, the rate doubles. Data showing a decrease of about 50 base-pairs per generation in fibroblasts suggest that a full deletion event is 100 to 200 base-pairs. Second, if cells senesce after 80 doublings in vitro, mean telomere length decreases about 4000 base-pairs, but one or more telomeres in each cell will lose significantly more telomeric DNA. A checkpoint for regulation of cell growth may be signalled at that point. Third, variation in telomere length predicted by the model is consistent with the abrupt decline in dividing cells at senescence. Finally, variation in length of terminal restriction fragments is not fully explained by incomplete replication, suggesting significant interchromosomal variation in the length of telomeric or subtelomeric repeats. This analysis, together with assumptions allowing dominance of telomerase inactivation, suggests that telomere loss could explain cell cycle exit in human fibroblasts.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/0022-2836(92)90096-3</identifier><identifier>PMID: 1613801</identifier><identifier>CODEN: JMOBAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adult ; Ageing, cell death ; Base Sequence ; Biological and medical sciences ; Cell Division ; cell kinetics ; Cell physiology ; Cells, Cultured ; Chromosome Deletion ; chromosomes ; Chromosomes, Human - physiology ; DNA - genetics ; DNA - metabolism ; DNA Replication ; fibroblasts ; Fibroblasts - cytology ; Fibroblasts - physiology ; Fundamental and applied biological sciences. Psychology ; Humans ; Kinetics ; Models, Genetic ; Molecular and cellular biology ; Oligonucleotide Probes ; Repetitive Sequences, Nucleic Acid ; senescence ; Skin Physiological Phenomena ; Telomere - physiology</subject><ispartof>Journal of molecular biology, 1992-06, Vol.225 (4), p.951-960</ispartof><rights>1992</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-4b7ed301a968abbacff48f5b3250f805d62c1fa2b967e50fe4d07064a382f14e3</citedby><cites>FETCH-LOGICAL-c417t-4b7ed301a968abbacff48f5b3250f805d62c1fa2b967e50fe4d07064a382f14e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0022283692900963$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5611289$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1613801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Levy, Michael Z.</creatorcontrib><creatorcontrib>Allsopp, Richard C.</creatorcontrib><creatorcontrib>Futcher, A.Bruce</creatorcontrib><creatorcontrib>Greider, Carol W.</creatorcontrib><creatorcontrib>Harley, Calvin B.</creatorcontrib><title>Telomere end-replication problem and cell aging</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Since DNA polymerase requires a labile primer to initiate unidirectional 5′-3′ synthesis, some bases at the 3′ end of each template strand are not copied unless special mechanisms bypass this “end-replication” problem. Immortal eukaryotic cells, including transformed human cells, apparently use telomerase, an enzyme that elongates telomeres, to overcome incomplete end-replication. However, telomerase has not been detected in normal somatic cells, and these cells lose telomeres with age. Therefore, to better understand the consequences of incomplete replication, we modeled this process for a population of dividing cells. The analysis suggests four things. First, if single-stranded overhangs generated by incomplete replication are not degraded, then mean telomere length decreases by 0.25 of a deletion event per generation. If overhangs are degraded, the rate doubles. Data showing a decrease of about 50 base-pairs per generation in fibroblasts suggest that a full deletion event is 100 to 200 base-pairs. Second, if cells senesce after 80 doublings in vitro, mean telomere length decreases about 4000 base-pairs, but one or more telomeres in each cell will lose significantly more telomeric DNA. A checkpoint for regulation of cell growth may be signalled at that point. Third, variation in telomere length predicted by the model is consistent with the abrupt decline in dividing cells at senescence. Finally, variation in length of terminal restriction fragments is not fully explained by incomplete replication, suggesting significant interchromosomal variation in the length of telomeric or subtelomeric repeats. This analysis, together with assumptions allowing dominance of telomerase inactivation, suggests that telomere loss could explain cell cycle exit in human fibroblasts.</description><subject>Adult</subject><subject>Ageing, cell death</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Cell Division</subject><subject>cell kinetics</subject><subject>Cell physiology</subject><subject>Cells, Cultured</subject><subject>Chromosome Deletion</subject><subject>chromosomes</subject><subject>Chromosomes, Human - physiology</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA Replication</subject><subject>fibroblasts</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Models, Genetic</subject><subject>Molecular and cellular biology</subject><subject>Oligonucleotide Probes</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>senescence</subject><subject>Skin Physiological Phenomena</subject><subject>Telomere - physiology</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LxDAQhoMo67r6DxR6ENFD3UnSpulFkMUvWPCynkOaTpZIP9akK_jvbe2y3vQ0MPO8w8tDyDmFWwpUzAEYi5nk4jpnNzlALmJ-QKYUZB5LweUhme6RY3ISwjsApDyREzKhgnIJdErmK6zaGj1G2JSxx03ljO5c20Qb3xYV1pFuyshgVUV67Zr1KTmyugp4tpsz8vb4sFo8x8vXp5fF_TI2Cc26OCkyLDlQnQupi0IbaxNp04KzFKyEtBTMUKtZkYsM-xUmJWQgEs0lszRBPiNX49--xscWQ6dqF4YausF2G1TGgfGMy39BKljGqBjAZASNb0PwaNXGu1r7L0VBDULVYEsNtlTO1I9QxfvYxe7_tqix_A2NBvv75e6ug9GV9boxLuyxVFDKZN5jdyOGvbRPh14F47AxWDqPplNl6_7u8Q3Tpo-n</recordid><startdate>19920620</startdate><enddate>19920620</enddate><creator>Levy, Michael Z.</creator><creator>Allsopp, Richard C.</creator><creator>Futcher, A.Bruce</creator><creator>Greider, Carol W.</creator><creator>Harley, Calvin B.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19920620</creationdate><title>Telomere end-replication problem and cell aging</title><author>Levy, Michael Z. ; Allsopp, Richard C. ; Futcher, A.Bruce ; Greider, Carol W. ; Harley, Calvin B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-4b7ed301a968abbacff48f5b3250f805d62c1fa2b967e50fe4d07064a382f14e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Adult</topic><topic>Ageing, cell death</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Cell Division</topic><topic>cell kinetics</topic><topic>Cell physiology</topic><topic>Cells, Cultured</topic><topic>Chromosome Deletion</topic><topic>chromosomes</topic><topic>Chromosomes, Human - physiology</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA Replication</topic><topic>fibroblasts</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Models, Genetic</topic><topic>Molecular and cellular biology</topic><topic>Oligonucleotide Probes</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>senescence</topic><topic>Skin Physiological Phenomena</topic><topic>Telomere - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levy, Michael Z.</creatorcontrib><creatorcontrib>Allsopp, Richard C.</creatorcontrib><creatorcontrib>Futcher, A.Bruce</creatorcontrib><creatorcontrib>Greider, Carol W.</creatorcontrib><creatorcontrib>Harley, Calvin B.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levy, Michael Z.</au><au>Allsopp, Richard C.</au><au>Futcher, A.Bruce</au><au>Greider, Carol W.</au><au>Harley, Calvin B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Telomere end-replication problem and cell aging</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>1992-06-20</date><risdate>1992</risdate><volume>225</volume><issue>4</issue><spage>951</spage><epage>960</epage><pages>951-960</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><coden>JMOBAK</coden><abstract>Since DNA polymerase requires a labile primer to initiate unidirectional 5′-3′ synthesis, some bases at the 3′ end of each template strand are not copied unless special mechanisms bypass this “end-replication” problem. Immortal eukaryotic cells, including transformed human cells, apparently use telomerase, an enzyme that elongates telomeres, to overcome incomplete end-replication. However, telomerase has not been detected in normal somatic cells, and these cells lose telomeres with age. Therefore, to better understand the consequences of incomplete replication, we modeled this process for a population of dividing cells. The analysis suggests four things. First, if single-stranded overhangs generated by incomplete replication are not degraded, then mean telomere length decreases by 0.25 of a deletion event per generation. If overhangs are degraded, the rate doubles. Data showing a decrease of about 50 base-pairs per generation in fibroblasts suggest that a full deletion event is 100 to 200 base-pairs. Second, if cells senesce after 80 doublings in vitro, mean telomere length decreases about 4000 base-pairs, but one or more telomeres in each cell will lose significantly more telomeric DNA. A checkpoint for regulation of cell growth may be signalled at that point. Third, variation in telomere length predicted by the model is consistent with the abrupt decline in dividing cells at senescence. Finally, variation in length of terminal restriction fragments is not fully explained by incomplete replication, suggesting significant interchromosomal variation in the length of telomeric or subtelomeric repeats. This analysis, together with assumptions allowing dominance of telomerase inactivation, suggests that telomere loss could explain cell cycle exit in human fibroblasts.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>1613801</pmid><doi>10.1016/0022-2836(92)90096-3</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 1992-06, Vol.225 (4), p.951-960
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_73023738
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adult
Ageing, cell death
Base Sequence
Biological and medical sciences
Cell Division
cell kinetics
Cell physiology
Cells, Cultured
Chromosome Deletion
chromosomes
Chromosomes, Human - physiology
DNA - genetics
DNA - metabolism
DNA Replication
fibroblasts
Fibroblasts - cytology
Fibroblasts - physiology
Fundamental and applied biological sciences. Psychology
Humans
Kinetics
Models, Genetic
Molecular and cellular biology
Oligonucleotide Probes
Repetitive Sequences, Nucleic Acid
senescence
Skin Physiological Phenomena
Telomere - physiology
title Telomere end-replication problem and cell aging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A28%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Telomere%20end-replication%20problem%20and%20cell%20aging&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Levy,%20Michael%20Z.&rft.date=1992-06-20&rft.volume=225&rft.issue=4&rft.spage=951&rft.epage=960&rft.pages=951-960&rft.issn=0022-2836&rft.eissn=1089-8638&rft.coden=JMOBAK&rft_id=info:doi/10.1016/0022-2836(92)90096-3&rft_dat=%3Cproquest_cross%3E16272168%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16272168&rft_id=info:pmid/1613801&rft_els_id=0022283692900963&rfr_iscdi=true