TNF plays an essential role in tumor regression after adoptive transfer of perforin/IFN-gamma double knockout effector T cells

We have recently shown that effector T cells (T(E)) lacking either perforin or IFN-gamma are highly effective mediators of tumor regression. To rule out compensation by either mechanism, T(E) deficient in both perforin and IFN-gamma (perforin knockout (PKO)/IFN-gamma knockout (GKO)) were generated....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2003-02, Vol.170 (4), p.2004-2013
Hauptverfasser: Poehlein, Christian H, Hu, Hong-Ming, Yamada, Jane, Assmann, Ilka, Alvord, W Gregory, Urba, Walter J, Fox, Bernard A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have recently shown that effector T cells (T(E)) lacking either perforin or IFN-gamma are highly effective mediators of tumor regression. To rule out compensation by either mechanism, T(E) deficient in both perforin and IFN-gamma (perforin knockout (PKO)/IFN-gamma knockout (GKO)) were generated. The adoptive transfer of PKO/GKO T(E) mediated complete tumor regression and cured wild-type animals with established pulmonary metastases of the B16BL6-D5 (D5) melanoma cell line. PKO/GKO T(E) also mediated tumor regression in D5 tumor-bearing PKO, GKO, or PKO/GKO recipients, although in PKO/GKO recipients efficacy was reduced. PKO/GKO T(E) exhibited tumor-specific TNF-alpha production and cytotoxicity in a 24-h assay, which was blocked by the soluble TNFRII-human IgG fusion protein (TNFRII:Fc). Blocking TNF in vivo by administering soluble TNFR II fusion protein (TNFRII:Fc) significantly reduced the therapeutic efficacy of PKO/GKO, but not wild-type T(E). This study identifies perforin, IFN-gamma, and TNF as a critical triad of effector molecules that characterize therapeutic antitumor T cells. These insights could be used to monitor and potentially tune the immune response to cancer vaccines.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.170.4.2004