Prediction of CNS Activity of Compound Libraries Using Substructure Analysis

An in silico ADME/Tox prediction tool based on substructural analysis has been developed. The tool called SUBSTRUCT has been used to predict CNS activity. Data sets with CNS active and nonactive drugs were extracted from the World Drug Index (WDI). The SUBSTRUCT program predicts CNS activity as good...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chemical Information and Computer Sciences 2003-01, Vol.43 (1), p.155-160
Hauptverfasser: Engkvist, Ola, Wrede, Paul, Rester, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 160
container_issue 1
container_start_page 155
container_title Journal of Chemical Information and Computer Sciences
container_volume 43
creator Engkvist, Ola
Wrede, Paul
Rester, Ulrich
description An in silico ADME/Tox prediction tool based on substructural analysis has been developed. The tool called SUBSTRUCT has been used to predict CNS activity. Data sets with CNS active and nonactive drugs were extracted from the World Drug Index (WDI). The SUBSTRUCT program predicts CNS activity as good as a much more complicated artificial neural network model. SUBSTRUCT separates the data sets with approximately 80% accuracy. Substructural analysis also shows surprisingly large differences in substructure profiles between CNS active and nonactive drugs.
doi_str_mv 10.1021/ci0102721
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72985749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72985749</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-26a2bd4a08c8067161d18f576dacad6abe769ddaa93db79dc1c81743ad75d1993</originalsourceid><addsrcrecordid>eNptkEFLwzAYhoMobk4P_gHpRcFDNWnapDnOoVMsOtkG3kKapBJtm5m04v69nR3z4unl5Xt4P3gAOEXwCsEIXUsDu6QR2gNDlMQsZAS-7oMhhCwJI4zTATjy_h1CjBmJDsEARUlMkjgdgmzmtDKyMbYObBFMnubBuGtfpln_dlutbFurIDO5E85oHyy9qd-CeZv7xrWyaZ0OxrUo1974Y3BQiNLrk22OwPLudjG5D7Pn6cNknIUCx6wJIyKiXMUCpjKFhCKCFEqLhBIlpFBE5JoSppQQDKucMiWRTBGNsVA0UYgxPAIX_e7K2c9W-4ZXxktdlqLWtvWcRixNaLwBL3tQOuu90wVfOVMJt-YI8o06vlPXsWfb0TavtPojt646IOwB4xv9vbsL98EJxTThi9mc05ebR5LOppx2_HnPC-n5u21dZ8n_8_gHMqeD1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72985749</pqid></control><display><type>article</type><title>Prediction of CNS Activity of Compound Libraries Using Substructure Analysis</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Engkvist, Ola ; Wrede, Paul ; Rester, Ulrich</creator><creatorcontrib>Engkvist, Ola ; Wrede, Paul ; Rester, Ulrich</creatorcontrib><description>An in silico ADME/Tox prediction tool based on substructural analysis has been developed. The tool called SUBSTRUCT has been used to predict CNS activity. Data sets with CNS active and nonactive drugs were extracted from the World Drug Index (WDI). The SUBSTRUCT program predicts CNS activity as good as a much more complicated artificial neural network model. SUBSTRUCT separates the data sets with approximately 80% accuracy. Substructural analysis also shows surprisingly large differences in substructure profiles between CNS active and nonactive drugs.</description><identifier>ISSN: 0095-2338</identifier><identifier>EISSN: 1549-960X</identifier><identifier>EISSN: 1520-5142</identifier><identifier>DOI: 10.1021/ci0102721</identifier><identifier>PMID: 12546548</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Blood-Brain Barrier - drug effects ; Central Nervous System Agents - chemistry ; Central Nervous System Agents - pharmacology ; Drug Design ; Models, Chemical ; Molecular Structure ; Neural Networks (Computer) ; Quantitative Structure-Activity Relationship ; Software</subject><ispartof>Journal of Chemical Information and Computer Sciences, 2003-01, Vol.43 (1), p.155-160</ispartof><rights>Copyright © 2003 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-26a2bd4a08c8067161d18f576dacad6abe769ddaa93db79dc1c81743ad75d1993</citedby><cites>FETCH-LOGICAL-a349t-26a2bd4a08c8067161d18f576dacad6abe769ddaa93db79dc1c81743ad75d1993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ci0102721$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ci0102721$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12546548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Engkvist, Ola</creatorcontrib><creatorcontrib>Wrede, Paul</creatorcontrib><creatorcontrib>Rester, Ulrich</creatorcontrib><title>Prediction of CNS Activity of Compound Libraries Using Substructure Analysis</title><title>Journal of Chemical Information and Computer Sciences</title><addtitle>J. Chem. Inf. Comput. Sci</addtitle><description>An in silico ADME/Tox prediction tool based on substructural analysis has been developed. The tool called SUBSTRUCT has been used to predict CNS activity. Data sets with CNS active and nonactive drugs were extracted from the World Drug Index (WDI). The SUBSTRUCT program predicts CNS activity as good as a much more complicated artificial neural network model. SUBSTRUCT separates the data sets with approximately 80% accuracy. Substructural analysis also shows surprisingly large differences in substructure profiles between CNS active and nonactive drugs.</description><subject>Blood-Brain Barrier - drug effects</subject><subject>Central Nervous System Agents - chemistry</subject><subject>Central Nervous System Agents - pharmacology</subject><subject>Drug Design</subject><subject>Models, Chemical</subject><subject>Molecular Structure</subject><subject>Neural Networks (Computer)</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Software</subject><issn>0095-2338</issn><issn>1549-960X</issn><issn>1520-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkEFLwzAYhoMobk4P_gHpRcFDNWnapDnOoVMsOtkG3kKapBJtm5m04v69nR3z4unl5Xt4P3gAOEXwCsEIXUsDu6QR2gNDlMQsZAS-7oMhhCwJI4zTATjy_h1CjBmJDsEARUlMkjgdgmzmtDKyMbYObBFMnubBuGtfpln_dlutbFurIDO5E85oHyy9qd-CeZv7xrWyaZ0OxrUo1974Y3BQiNLrk22OwPLudjG5D7Pn6cNknIUCx6wJIyKiXMUCpjKFhCKCFEqLhBIlpFBE5JoSppQQDKucMiWRTBGNsVA0UYgxPAIX_e7K2c9W-4ZXxktdlqLWtvWcRixNaLwBL3tQOuu90wVfOVMJt-YI8o06vlPXsWfb0TavtPojt646IOwB4xv9vbsL98EJxTThi9mc05ebR5LOppx2_HnPC-n5u21dZ8n_8_gHMqeD1A</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Engkvist, Ola</creator><creator>Wrede, Paul</creator><creator>Rester, Ulrich</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030101</creationdate><title>Prediction of CNS Activity of Compound Libraries Using Substructure Analysis</title><author>Engkvist, Ola ; Wrede, Paul ; Rester, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-26a2bd4a08c8067161d18f576dacad6abe769ddaa93db79dc1c81743ad75d1993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Blood-Brain Barrier - drug effects</topic><topic>Central Nervous System Agents - chemistry</topic><topic>Central Nervous System Agents - pharmacology</topic><topic>Drug Design</topic><topic>Models, Chemical</topic><topic>Molecular Structure</topic><topic>Neural Networks (Computer)</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Engkvist, Ola</creatorcontrib><creatorcontrib>Wrede, Paul</creatorcontrib><creatorcontrib>Rester, Ulrich</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Chemical Information and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Engkvist, Ola</au><au>Wrede, Paul</au><au>Rester, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of CNS Activity of Compound Libraries Using Substructure Analysis</atitle><jtitle>Journal of Chemical Information and Computer Sciences</jtitle><addtitle>J. Chem. Inf. Comput. Sci</addtitle><date>2003-01-01</date><risdate>2003</risdate><volume>43</volume><issue>1</issue><spage>155</spage><epage>160</epage><pages>155-160</pages><issn>0095-2338</issn><eissn>1549-960X</eissn><eissn>1520-5142</eissn><abstract>An in silico ADME/Tox prediction tool based on substructural analysis has been developed. The tool called SUBSTRUCT has been used to predict CNS activity. Data sets with CNS active and nonactive drugs were extracted from the World Drug Index (WDI). The SUBSTRUCT program predicts CNS activity as good as a much more complicated artificial neural network model. SUBSTRUCT separates the data sets with approximately 80% accuracy. Substructural analysis also shows surprisingly large differences in substructure profiles between CNS active and nonactive drugs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>12546548</pmid><doi>10.1021/ci0102721</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0095-2338
ispartof Journal of Chemical Information and Computer Sciences, 2003-01, Vol.43 (1), p.155-160
issn 0095-2338
1549-960X
1520-5142
language eng
recordid cdi_proquest_miscellaneous_72985749
source MEDLINE; American Chemical Society Journals
subjects Blood-Brain Barrier - drug effects
Central Nervous System Agents - chemistry
Central Nervous System Agents - pharmacology
Drug Design
Models, Chemical
Molecular Structure
Neural Networks (Computer)
Quantitative Structure-Activity Relationship
Software
title Prediction of CNS Activity of Compound Libraries Using Substructure Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20CNS%20Activity%20of%20Compound%20Libraries%20Using%20Substructure%20Analysis&rft.jtitle=Journal%20of%20Chemical%20Information%20and%20Computer%20Sciences&rft.au=Engkvist,%20Ola&rft.date=2003-01-01&rft.volume=43&rft.issue=1&rft.spage=155&rft.epage=160&rft.pages=155-160&rft.issn=0095-2338&rft.eissn=1549-960X&rft_id=info:doi/10.1021/ci0102721&rft_dat=%3Cproquest_cross%3E72985749%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72985749&rft_id=info:pmid/12546548&rfr_iscdi=true