Prediction of CNS Activity of Compound Libraries Using Substructure Analysis
An in silico ADME/Tox prediction tool based on substructural analysis has been developed. The tool called SUBSTRUCT has been used to predict CNS activity. Data sets with CNS active and nonactive drugs were extracted from the World Drug Index (WDI). The SUBSTRUCT program predicts CNS activity as good...
Gespeichert in:
Veröffentlicht in: | Journal of Chemical Information and Computer Sciences 2003-01, Vol.43 (1), p.155-160 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 160 |
---|---|
container_issue | 1 |
container_start_page | 155 |
container_title | Journal of Chemical Information and Computer Sciences |
container_volume | 43 |
creator | Engkvist, Ola Wrede, Paul Rester, Ulrich |
description | An in silico ADME/Tox prediction tool based on substructural analysis has been developed. The tool called SUBSTRUCT has been used to predict CNS activity. Data sets with CNS active and nonactive drugs were extracted from the World Drug Index (WDI). The SUBSTRUCT program predicts CNS activity as good as a much more complicated artificial neural network model. SUBSTRUCT separates the data sets with approximately 80% accuracy. Substructural analysis also shows surprisingly large differences in substructure profiles between CNS active and nonactive drugs. |
doi_str_mv | 10.1021/ci0102721 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72985749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72985749</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-26a2bd4a08c8067161d18f576dacad6abe769ddaa93db79dc1c81743ad75d1993</originalsourceid><addsrcrecordid>eNptkEFLwzAYhoMobk4P_gHpRcFDNWnapDnOoVMsOtkG3kKapBJtm5m04v69nR3z4unl5Xt4P3gAOEXwCsEIXUsDu6QR2gNDlMQsZAS-7oMhhCwJI4zTATjy_h1CjBmJDsEARUlMkjgdgmzmtDKyMbYObBFMnubBuGtfpln_dlutbFurIDO5E85oHyy9qd-CeZv7xrWyaZ0OxrUo1974Y3BQiNLrk22OwPLudjG5D7Pn6cNknIUCx6wJIyKiXMUCpjKFhCKCFEqLhBIlpFBE5JoSppQQDKucMiWRTBGNsVA0UYgxPAIX_e7K2c9W-4ZXxktdlqLWtvWcRixNaLwBL3tQOuu90wVfOVMJt-YI8o06vlPXsWfb0TavtPojt646IOwB4xv9vbsL98EJxTThi9mc05ebR5LOppx2_HnPC-n5u21dZ8n_8_gHMqeD1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72985749</pqid></control><display><type>article</type><title>Prediction of CNS Activity of Compound Libraries Using Substructure Analysis</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Engkvist, Ola ; Wrede, Paul ; Rester, Ulrich</creator><creatorcontrib>Engkvist, Ola ; Wrede, Paul ; Rester, Ulrich</creatorcontrib><description>An in silico ADME/Tox prediction tool based on substructural analysis has been developed. The tool called SUBSTRUCT has been used to predict CNS activity. Data sets with CNS active and nonactive drugs were extracted from the World Drug Index (WDI). The SUBSTRUCT program predicts CNS activity as good as a much more complicated artificial neural network model. SUBSTRUCT separates the data sets with approximately 80% accuracy. Substructural analysis also shows surprisingly large differences in substructure profiles between CNS active and nonactive drugs.</description><identifier>ISSN: 0095-2338</identifier><identifier>EISSN: 1549-960X</identifier><identifier>EISSN: 1520-5142</identifier><identifier>DOI: 10.1021/ci0102721</identifier><identifier>PMID: 12546548</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Blood-Brain Barrier - drug effects ; Central Nervous System Agents - chemistry ; Central Nervous System Agents - pharmacology ; Drug Design ; Models, Chemical ; Molecular Structure ; Neural Networks (Computer) ; Quantitative Structure-Activity Relationship ; Software</subject><ispartof>Journal of Chemical Information and Computer Sciences, 2003-01, Vol.43 (1), p.155-160</ispartof><rights>Copyright © 2003 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-26a2bd4a08c8067161d18f576dacad6abe769ddaa93db79dc1c81743ad75d1993</citedby><cites>FETCH-LOGICAL-a349t-26a2bd4a08c8067161d18f576dacad6abe769ddaa93db79dc1c81743ad75d1993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ci0102721$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ci0102721$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12546548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Engkvist, Ola</creatorcontrib><creatorcontrib>Wrede, Paul</creatorcontrib><creatorcontrib>Rester, Ulrich</creatorcontrib><title>Prediction of CNS Activity of Compound Libraries Using Substructure Analysis</title><title>Journal of Chemical Information and Computer Sciences</title><addtitle>J. Chem. Inf. Comput. Sci</addtitle><description>An in silico ADME/Tox prediction tool based on substructural analysis has been developed. The tool called SUBSTRUCT has been used to predict CNS activity. Data sets with CNS active and nonactive drugs were extracted from the World Drug Index (WDI). The SUBSTRUCT program predicts CNS activity as good as a much more complicated artificial neural network model. SUBSTRUCT separates the data sets with approximately 80% accuracy. Substructural analysis also shows surprisingly large differences in substructure profiles between CNS active and nonactive drugs.</description><subject>Blood-Brain Barrier - drug effects</subject><subject>Central Nervous System Agents - chemistry</subject><subject>Central Nervous System Agents - pharmacology</subject><subject>Drug Design</subject><subject>Models, Chemical</subject><subject>Molecular Structure</subject><subject>Neural Networks (Computer)</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Software</subject><issn>0095-2338</issn><issn>1549-960X</issn><issn>1520-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkEFLwzAYhoMobk4P_gHpRcFDNWnapDnOoVMsOtkG3kKapBJtm5m04v69nR3z4unl5Xt4P3gAOEXwCsEIXUsDu6QR2gNDlMQsZAS-7oMhhCwJI4zTATjy_h1CjBmJDsEARUlMkjgdgmzmtDKyMbYObBFMnubBuGtfpln_dlutbFurIDO5E85oHyy9qd-CeZv7xrWyaZ0OxrUo1974Y3BQiNLrk22OwPLudjG5D7Pn6cNknIUCx6wJIyKiXMUCpjKFhCKCFEqLhBIlpFBE5JoSppQQDKucMiWRTBGNsVA0UYgxPAIX_e7K2c9W-4ZXxktdlqLWtvWcRixNaLwBL3tQOuu90wVfOVMJt-YI8o06vlPXsWfb0TavtPojt646IOwB4xv9vbsL98EJxTThi9mc05ebR5LOppx2_HnPC-n5u21dZ8n_8_gHMqeD1A</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Engkvist, Ola</creator><creator>Wrede, Paul</creator><creator>Rester, Ulrich</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030101</creationdate><title>Prediction of CNS Activity of Compound Libraries Using Substructure Analysis</title><author>Engkvist, Ola ; Wrede, Paul ; Rester, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-26a2bd4a08c8067161d18f576dacad6abe769ddaa93db79dc1c81743ad75d1993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Blood-Brain Barrier - drug effects</topic><topic>Central Nervous System Agents - chemistry</topic><topic>Central Nervous System Agents - pharmacology</topic><topic>Drug Design</topic><topic>Models, Chemical</topic><topic>Molecular Structure</topic><topic>Neural Networks (Computer)</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Engkvist, Ola</creatorcontrib><creatorcontrib>Wrede, Paul</creatorcontrib><creatorcontrib>Rester, Ulrich</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Chemical Information and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Engkvist, Ola</au><au>Wrede, Paul</au><au>Rester, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of CNS Activity of Compound Libraries Using Substructure Analysis</atitle><jtitle>Journal of Chemical Information and Computer Sciences</jtitle><addtitle>J. Chem. Inf. Comput. Sci</addtitle><date>2003-01-01</date><risdate>2003</risdate><volume>43</volume><issue>1</issue><spage>155</spage><epage>160</epage><pages>155-160</pages><issn>0095-2338</issn><eissn>1549-960X</eissn><eissn>1520-5142</eissn><abstract>An in silico ADME/Tox prediction tool based on substructural analysis has been developed. The tool called SUBSTRUCT has been used to predict CNS activity. Data sets with CNS active and nonactive drugs were extracted from the World Drug Index (WDI). The SUBSTRUCT program predicts CNS activity as good as a much more complicated artificial neural network model. SUBSTRUCT separates the data sets with approximately 80% accuracy. Substructural analysis also shows surprisingly large differences in substructure profiles between CNS active and nonactive drugs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>12546548</pmid><doi>10.1021/ci0102721</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0095-2338 |
ispartof | Journal of Chemical Information and Computer Sciences, 2003-01, Vol.43 (1), p.155-160 |
issn | 0095-2338 1549-960X 1520-5142 |
language | eng |
recordid | cdi_proquest_miscellaneous_72985749 |
source | MEDLINE; American Chemical Society Journals |
subjects | Blood-Brain Barrier - drug effects Central Nervous System Agents - chemistry Central Nervous System Agents - pharmacology Drug Design Models, Chemical Molecular Structure Neural Networks (Computer) Quantitative Structure-Activity Relationship Software |
title | Prediction of CNS Activity of Compound Libraries Using Substructure Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20CNS%20Activity%20of%20Compound%20Libraries%20Using%20Substructure%20Analysis&rft.jtitle=Journal%20of%20Chemical%20Information%20and%20Computer%20Sciences&rft.au=Engkvist,%20Ola&rft.date=2003-01-01&rft.volume=43&rft.issue=1&rft.spage=155&rft.epage=160&rft.pages=155-160&rft.issn=0095-2338&rft.eissn=1549-960X&rft_id=info:doi/10.1021/ci0102721&rft_dat=%3Cproquest_cross%3E72985749%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72985749&rft_id=info:pmid/12546548&rfr_iscdi=true |