Chemicofunctional Membrane for Integrated Chemical Processes on a Microchip
Here we report a design and synthesis of a chemically functional polymer membrane by an interfacial polycondensation reaction and multilayer flow inside a microchannel. Single and parallel dual-membrane structures are successfully prepared by using organic/aqueous two-layer flow and organic/aqueous/...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2003-01, Vol.75 (2), p.350-354 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 354 |
---|---|
container_issue | 2 |
container_start_page | 350 |
container_title | Analytical chemistry (Washington) |
container_volume | 75 |
creator | Hisamoto, Hideaki Shimizu, Yuki Uchiyama, Kenji Tokeshi, Manabu Kikutani, Yoshikuni Hibara, Akihide Kitamori, Takehiko |
description | Here we report a design and synthesis of a chemically functional polymer membrane by an interfacial polycondensation reaction and multilayer flow inside a microchannel. Single and parallel dual-membrane structures are successfully prepared by using organic/aqueous two-layer flow and organic/aqueous/organic three-layer flow inside the microchannel followed by an interfacial polycondensation reaction. By using the inner-channel membrane, permeation of ammonia species through the inner-channel membrane is successfully achieved. Furthermore, horseradish peroxidase is immobilized on one side of the membrane surface to integrate the chemical transform function onto the inner-channel membrane. Here substrate permeation through the membrane and subsequent chemical transformation at the membrane surface are realized. The polymer membrane prepared inside the microchannel has an important role in ensuring stable contact of different phases such as gas/liquid or liquid/liquid and the permeation of chemical species through the membrane. Furthermore, membrane surface modification chemistry allows chemical transformation of permeated chemical species. These methods are expected to lead to development of complicated and sophisticated chemical systems involving membrane permeation and chemical reactions. |
doi_str_mv | 10.1021/ac025794+ |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72983452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>279133761</sourcerecordid><originalsourceid>FETCH-LOGICAL-a440t-9ac0c52fa04a901bf25956a52c5f607d02111d703aceb97eded0e323581060923</originalsourceid><addsrcrecordid>eNpl0U1r3DAQBmBRGprtpof-gWBKWwLF6UjyWNYxWZoPsvmApJdehFYeJ07W9layofn3UfA2C8lJID0M875i7DOHfQ6C_7QOBCqd_XjHJhwFpHlRiPdsAgAyFQpgm30M4R6Ac-D5B7bNBaJUSk7Y2eyOmtp11dC6vu5au0zOqVl421JSdT45bXu69banMhllBFe-cxQChaRrE5uc1y5e3NWrHbZV2WWgT-tzyn4f_bqZnaTzy-PT2cE8tVkGfarjug5FZSGzGviiEqgxtygcVjmoMibivFQgraOFVlRSCSSFxIJDDlrIKfs-zl357u9AoTdNHRwtl3HpbghGCV3IDJ_hl1fwvht8zBiM4EpDgVhEtDeimCIET5VZ-bqx_tFwMM_1mv_1Rrq7njcsGio3cF1nBN_WwIbYVBVrdHXYuCzTHOOnTFk6ujr09O_l3foHkyup0NxcXZtrnKO4OCzMn-i_jt66sMnwZr8nhxSZ-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217908558</pqid></control><display><type>article</type><title>Chemicofunctional Membrane for Integrated Chemical Processes on a Microchip</title><source>American Chemical Society (ACS) Journals</source><creator>Hisamoto, Hideaki ; Shimizu, Yuki ; Uchiyama, Kenji ; Tokeshi, Manabu ; Kikutani, Yoshikuni ; Hibara, Akihide ; Kitamori, Takehiko</creator><creatorcontrib>Hisamoto, Hideaki ; Shimizu, Yuki ; Uchiyama, Kenji ; Tokeshi, Manabu ; Kikutani, Yoshikuni ; Hibara, Akihide ; Kitamori, Takehiko</creatorcontrib><description>Here we report a design and synthesis of a chemically functional polymer membrane by an interfacial polycondensation reaction and multilayer flow inside a microchannel. Single and parallel dual-membrane structures are successfully prepared by using organic/aqueous two-layer flow and organic/aqueous/organic three-layer flow inside the microchannel followed by an interfacial polycondensation reaction. By using the inner-channel membrane, permeation of ammonia species through the inner-channel membrane is successfully achieved. Furthermore, horseradish peroxidase is immobilized on one side of the membrane surface to integrate the chemical transform function onto the inner-channel membrane. Here substrate permeation through the membrane and subsequent chemical transformation at the membrane surface are realized. The polymer membrane prepared inside the microchannel has an important role in ensuring stable contact of different phases such as gas/liquid or liquid/liquid and the permeation of chemical species through the membrane. Furthermore, membrane surface modification chemistry allows chemical transformation of permeated chemical species. These methods are expected to lead to development of complicated and sophisticated chemical systems involving membrane permeation and chemical reactions.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac025794+</identifier><identifier>PMID: 12553773</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Biological and medical sciences ; Biotechnology ; Chemistry ; Fundamental and applied biological sciences. Psychology ; Immobilization of enzymes and other molecules ; Immobilization techniques ; Membranes ; Methods. Procedures. Technologies ; Semiconductors</subject><ispartof>Analytical chemistry (Washington), 2003-01, Vol.75 (2), p.350-354</ispartof><rights>Copyright © 2003 American Chemical Society</rights><rights>2003 INIST-CNRS</rights><rights>Copyright American Chemical Society Jan 15, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a440t-9ac0c52fa04a901bf25956a52c5f607d02111d703aceb97eded0e323581060923</citedby><cites>FETCH-LOGICAL-a440t-9ac0c52fa04a901bf25956a52c5f607d02111d703aceb97eded0e323581060923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac025794+$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac025794+$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14491500$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12553773$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hisamoto, Hideaki</creatorcontrib><creatorcontrib>Shimizu, Yuki</creatorcontrib><creatorcontrib>Uchiyama, Kenji</creatorcontrib><creatorcontrib>Tokeshi, Manabu</creatorcontrib><creatorcontrib>Kikutani, Yoshikuni</creatorcontrib><creatorcontrib>Hibara, Akihide</creatorcontrib><creatorcontrib>Kitamori, Takehiko</creatorcontrib><title>Chemicofunctional Membrane for Integrated Chemical Processes on a Microchip</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Here we report a design and synthesis of a chemically functional polymer membrane by an interfacial polycondensation reaction and multilayer flow inside a microchannel. Single and parallel dual-membrane structures are successfully prepared by using organic/aqueous two-layer flow and organic/aqueous/organic three-layer flow inside the microchannel followed by an interfacial polycondensation reaction. By using the inner-channel membrane, permeation of ammonia species through the inner-channel membrane is successfully achieved. Furthermore, horseradish peroxidase is immobilized on one side of the membrane surface to integrate the chemical transform function onto the inner-channel membrane. Here substrate permeation through the membrane and subsequent chemical transformation at the membrane surface are realized. The polymer membrane prepared inside the microchannel has an important role in ensuring stable contact of different phases such as gas/liquid or liquid/liquid and the permeation of chemical species through the membrane. Furthermore, membrane surface modification chemistry allows chemical transformation of permeated chemical species. These methods are expected to lead to development of complicated and sophisticated chemical systems involving membrane permeation and chemical reactions.</description><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Immobilization of enzymes and other molecules</subject><subject>Immobilization techniques</subject><subject>Membranes</subject><subject>Methods. Procedures. Technologies</subject><subject>Semiconductors</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpl0U1r3DAQBmBRGprtpof-gWBKWwLF6UjyWNYxWZoPsvmApJdehFYeJ07W9layofn3UfA2C8lJID0M875i7DOHfQ6C_7QOBCqd_XjHJhwFpHlRiPdsAgAyFQpgm30M4R6Ac-D5B7bNBaJUSk7Y2eyOmtp11dC6vu5au0zOqVl421JSdT45bXu69banMhllBFe-cxQChaRrE5uc1y5e3NWrHbZV2WWgT-tzyn4f_bqZnaTzy-PT2cE8tVkGfarjug5FZSGzGviiEqgxtygcVjmoMibivFQgraOFVlRSCSSFxIJDDlrIKfs-zl357u9AoTdNHRwtl3HpbghGCV3IDJ_hl1fwvht8zBiM4EpDgVhEtDeimCIET5VZ-bqx_tFwMM_1mv_1Rrq7njcsGio3cF1nBN_WwIbYVBVrdHXYuCzTHOOnTFk6ujr09O_l3foHkyup0NxcXZtrnKO4OCzMn-i_jt66sMnwZr8nhxSZ-Q</recordid><startdate>20030115</startdate><enddate>20030115</enddate><creator>Hisamoto, Hideaki</creator><creator>Shimizu, Yuki</creator><creator>Uchiyama, Kenji</creator><creator>Tokeshi, Manabu</creator><creator>Kikutani, Yoshikuni</creator><creator>Hibara, Akihide</creator><creator>Kitamori, Takehiko</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20030115</creationdate><title>Chemicofunctional Membrane for Integrated Chemical Processes on a Microchip</title><author>Hisamoto, Hideaki ; Shimizu, Yuki ; Uchiyama, Kenji ; Tokeshi, Manabu ; Kikutani, Yoshikuni ; Hibara, Akihide ; Kitamori, Takehiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a440t-9ac0c52fa04a901bf25956a52c5f607d02111d703aceb97eded0e323581060923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Immobilization of enzymes and other molecules</topic><topic>Immobilization techniques</topic><topic>Membranes</topic><topic>Methods. Procedures. Technologies</topic><topic>Semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hisamoto, Hideaki</creatorcontrib><creatorcontrib>Shimizu, Yuki</creatorcontrib><creatorcontrib>Uchiyama, Kenji</creatorcontrib><creatorcontrib>Tokeshi, Manabu</creatorcontrib><creatorcontrib>Kikutani, Yoshikuni</creatorcontrib><creatorcontrib>Hibara, Akihide</creatorcontrib><creatorcontrib>Kitamori, Takehiko</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hisamoto, Hideaki</au><au>Shimizu, Yuki</au><au>Uchiyama, Kenji</au><au>Tokeshi, Manabu</au><au>Kikutani, Yoshikuni</au><au>Hibara, Akihide</au><au>Kitamori, Takehiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemicofunctional Membrane for Integrated Chemical Processes on a Microchip</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2003-01-15</date><risdate>2003</risdate><volume>75</volume><issue>2</issue><spage>350</spage><epage>354</epage><pages>350-354</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Here we report a design and synthesis of a chemically functional polymer membrane by an interfacial polycondensation reaction and multilayer flow inside a microchannel. Single and parallel dual-membrane structures are successfully prepared by using organic/aqueous two-layer flow and organic/aqueous/organic three-layer flow inside the microchannel followed by an interfacial polycondensation reaction. By using the inner-channel membrane, permeation of ammonia species through the inner-channel membrane is successfully achieved. Furthermore, horseradish peroxidase is immobilized on one side of the membrane surface to integrate the chemical transform function onto the inner-channel membrane. Here substrate permeation through the membrane and subsequent chemical transformation at the membrane surface are realized. The polymer membrane prepared inside the microchannel has an important role in ensuring stable contact of different phases such as gas/liquid or liquid/liquid and the permeation of chemical species through the membrane. Furthermore, membrane surface modification chemistry allows chemical transformation of permeated chemical species. These methods are expected to lead to development of complicated and sophisticated chemical systems involving membrane permeation and chemical reactions.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>12553773</pmid><doi>10.1021/ac025794+</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2003-01, Vol.75 (2), p.350-354 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_72983452 |
source | American Chemical Society (ACS) Journals |
subjects | Biological and medical sciences Biotechnology Chemistry Fundamental and applied biological sciences. Psychology Immobilization of enzymes and other molecules Immobilization techniques Membranes Methods. Procedures. Technologies Semiconductors |
title | Chemicofunctional Membrane for Integrated Chemical Processes on a Microchip |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A01%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemicofunctional%20Membrane%20for%20Integrated%20Chemical%20Processes%20on%20a%20Microchip&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Hisamoto,%20Hideaki&rft.date=2003-01-15&rft.volume=75&rft.issue=2&rft.spage=350&rft.epage=354&rft.pages=350-354&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac025794+&rft_dat=%3Cproquest_cross%3E279133761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217908558&rft_id=info:pmid/12553773&rfr_iscdi=true |