Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: the role of human β-glucuronidase, sulfotransferase, catechol- O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism

Quercetin-3- and quercetin-7-glucuronides are major products of small intestine epithelial cell metabolism (J. Nutr. 130 (2000) 2765) but it is not known if quercetin glucuronides can be further processed in the liver or if they are excreted directly. Using the HepG2 hepatic cell model, we show that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical pharmacology 2003-02, Vol.65 (3), p.479-491
Hauptverfasser: O’Leary, Karen A, Day, Andrea J, Needs, Paul W, Mellon, Fred A, O’Brien, Nora M, Williamson, Gary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 491
container_issue 3
container_start_page 479
container_title Biochemical pharmacology
container_volume 65
creator O’Leary, Karen A
Day, Andrea J
Needs, Paul W
Mellon, Fred A
O’Brien, Nora M
Williamson, Gary
description Quercetin-3- and quercetin-7-glucuronides are major products of small intestine epithelial cell metabolism (J. Nutr. 130 (2000) 2765) but it is not known if quercetin glucuronides can be further processed in the liver or if they are excreted directly. Using the HepG2 hepatic cell model, we show that highly purified quercetin-7- and quercetin-3-glucuronides can follow two pathways of metabolism: (i) methylation of the catechol functional group of both quercetin glucuronides (44% of quercetin-7-glucuronide at a rate of 2.6 nmol/hr/10 6 cells, and 32% of quercetin-3-glucuronide at a rate of 1.9 nmol/hr/10 6 cells, over 48 hr) or (ii) hydrolysis of the glucuronide by endogenous β-glucuronidase followed by sulfation to quercetin-3′-sulfate (7% of quercetin-7-glucuronide at a rate of 0.42 nmol/hr/10 6 cells and 10% of quercetin-3-glucuronide at a rate of 0.61 nmol/hr/10 6 cells, over 48 hr). In contrast, quercetin-4′-glucuronide was not metabolised, and interestingly this is not a major product of the small intestine absorption process. The conversion of the quercetin-7- and quercetin-3-glucuronide to the mono-sulfate conjugate shows intracellular deglucuronidation by β-glucuronidase activity, allowing transient contact of the free aglycone with the cellular environment. Inhibition of methylation using a catechol- O-methyltransferase inhibitor shifted metabolism towards sulfation, as indicated by an increase in quercetin-3′-sulfate formation (increase in rate to 1.13 and 1.43 nmol/hr/10 6 cells for quercetin-7-glucuronide and quercetin-3-glucuronide, respectively). Efflux of quercetin metabolites from HepG2 cells (methylated glucuronide and sulfate conjugates) was not altered by verapamil, a p-glycoprotein inhibitor, but efflux was competitively inhibited by MK-571, a multidrug resistant protein inhibitor, indicating a role for multidrug resistant protein in the efflux of quercetin conjugates from HepG2 cells. These results show that HepG2 cells can absorb and turnover quercetin glucuronides and that human endogenous β-glucuronidase activity could modulate the intracellular biological activities of dietary antioxidant flavonoids.
doi_str_mv 10.1016/S0006-2952(02)01510-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72969046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006295202015101</els_id><sourcerecordid>72969046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-9524a61953c61cd20c7fe5b8162967b811d406cbacaff66e1077c71dca03e9be3</originalsourceid><addsrcrecordid>eNqFkduKFDEQhoMo7rj6CEpulF0wmvQhPe2NyOIJdlnxcB3S1RUnku7MJumBeS0fxMfwOUzPDLtzJwRCKl9V_vw_IU8FfyW4kK-_cc4lK9q6OOPFORe14EzcIwuxbMpclsv7ZHGLnJBHMf6aj0spHpITUdRFU1ZiQf5eYdKddzYO1Bt6M2EATHZkDaN67I8KJfvpJpiCH22PkXbbfE_tSDc2BU9XuNbJAh18j-4NTSukwTucZ66mIZN_fh_164gvaZyc8SnoMRoMuwrohLDyjtFrNmBabd3R9U7OMLlkWcBoY9JjouvgE2YRBT27-vqlOJ8FGac3fvQ207d_e0weGO0iPjnsp-THh_ffLz6xy-uPny_eXTKoqjKxbFWlpWjrEqSAvuDQGKy7pZDZ0Sbvoq-4hE6DNkZKFLxpoBE9aF5i22F5Sl7s52Zh2bqY1GAjoHN6RD9F1eQ5La9kBus9CMHHGNCodbCDDlsluJoDVruA1Zye4nnNASuR-54dHpi6Afu7rkOiGXh-AHQE7Uw2EGy846qqbYWsM_d2z2G2Y2MxqAgWR8DeBoSkem__I-UfoXbHrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72969046</pqid></control><display><type>article</type><title>Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: the role of human β-glucuronidase, sulfotransferase, catechol- O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>O’Leary, Karen A ; Day, Andrea J ; Needs, Paul W ; Mellon, Fred A ; O’Brien, Nora M ; Williamson, Gary</creator><creatorcontrib>O’Leary, Karen A ; Day, Andrea J ; Needs, Paul W ; Mellon, Fred A ; O’Brien, Nora M ; Williamson, Gary</creatorcontrib><description>Quercetin-3- and quercetin-7-glucuronides are major products of small intestine epithelial cell metabolism (J. Nutr. 130 (2000) 2765) but it is not known if quercetin glucuronides can be further processed in the liver or if they are excreted directly. Using the HepG2 hepatic cell model, we show that highly purified quercetin-7- and quercetin-3-glucuronides can follow two pathways of metabolism: (i) methylation of the catechol functional group of both quercetin glucuronides (44% of quercetin-7-glucuronide at a rate of 2.6 nmol/hr/10 6 cells, and 32% of quercetin-3-glucuronide at a rate of 1.9 nmol/hr/10 6 cells, over 48 hr) or (ii) hydrolysis of the glucuronide by endogenous β-glucuronidase followed by sulfation to quercetin-3′-sulfate (7% of quercetin-7-glucuronide at a rate of 0.42 nmol/hr/10 6 cells and 10% of quercetin-3-glucuronide at a rate of 0.61 nmol/hr/10 6 cells, over 48 hr). In contrast, quercetin-4′-glucuronide was not metabolised, and interestingly this is not a major product of the small intestine absorption process. The conversion of the quercetin-7- and quercetin-3-glucuronide to the mono-sulfate conjugate shows intracellular deglucuronidation by β-glucuronidase activity, allowing transient contact of the free aglycone with the cellular environment. Inhibition of methylation using a catechol- O-methyltransferase inhibitor shifted metabolism towards sulfation, as indicated by an increase in quercetin-3′-sulfate formation (increase in rate to 1.13 and 1.43 nmol/hr/10 6 cells for quercetin-7-glucuronide and quercetin-3-glucuronide, respectively). Efflux of quercetin metabolites from HepG2 cells (methylated glucuronide and sulfate conjugates) was not altered by verapamil, a p-glycoprotein inhibitor, but efflux was competitively inhibited by MK-571, a multidrug resistant protein inhibitor, indicating a role for multidrug resistant protein in the efflux of quercetin conjugates from HepG2 cells. These results show that HepG2 cells can absorb and turnover quercetin glucuronides and that human endogenous β-glucuronidase activity could modulate the intracellular biological activities of dietary antioxidant flavonoids.</description><identifier>ISSN: 0006-2952</identifier><identifier>EISSN: 1873-2968</identifier><identifier>DOI: 10.1016/S0006-2952(02)01510-1</identifier><identifier>PMID: 12527341</identifier><identifier>CODEN: BCPCA6</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Biological and medical sciences ; Catechol O-Methyltransferase - metabolism ; Cell Extracts ; Enzyme Inhibitors - pharmacology ; Flavonoids ; General and cellular metabolism. Vitamins ; Glucuronidase - antagonists &amp; inhibitors ; Glucuronidase - metabolism ; Glucuronides ; Glucuronides - chemistry ; Glucuronides - metabolism ; HepG2 cells ; Human ; Humans ; Liver - enzymology ; Liver - metabolism ; Medical sciences ; Metabolism ; Mitochondrial Proteins ; Pharmacology. Drug treatments ; Quercetin - chemistry ; Quercetin - metabolism ; Ribosomal Proteins - metabolism ; Saccharomyces cerevisiae Proteins ; Sulfotransferases - metabolism ; Tumor Cells, Cultured ; β-Glucuronidase</subject><ispartof>Biochemical pharmacology, 2003-02, Vol.65 (3), p.479-491</ispartof><rights>2002 Elsevier Science Inc.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-9524a61953c61cd20c7fe5b8162967b811d406cbacaff66e1077c71dca03e9be3</citedby><cites>FETCH-LOGICAL-c443t-9524a61953c61cd20c7fe5b8162967b811d406cbacaff66e1077c71dca03e9be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-2952(02)01510-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14499165$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12527341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O’Leary, Karen A</creatorcontrib><creatorcontrib>Day, Andrea J</creatorcontrib><creatorcontrib>Needs, Paul W</creatorcontrib><creatorcontrib>Mellon, Fred A</creatorcontrib><creatorcontrib>O’Brien, Nora M</creatorcontrib><creatorcontrib>Williamson, Gary</creatorcontrib><title>Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: the role of human β-glucuronidase, sulfotransferase, catechol- O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism</title><title>Biochemical pharmacology</title><addtitle>Biochem Pharmacol</addtitle><description>Quercetin-3- and quercetin-7-glucuronides are major products of small intestine epithelial cell metabolism (J. Nutr. 130 (2000) 2765) but it is not known if quercetin glucuronides can be further processed in the liver or if they are excreted directly. Using the HepG2 hepatic cell model, we show that highly purified quercetin-7- and quercetin-3-glucuronides can follow two pathways of metabolism: (i) methylation of the catechol functional group of both quercetin glucuronides (44% of quercetin-7-glucuronide at a rate of 2.6 nmol/hr/10 6 cells, and 32% of quercetin-3-glucuronide at a rate of 1.9 nmol/hr/10 6 cells, over 48 hr) or (ii) hydrolysis of the glucuronide by endogenous β-glucuronidase followed by sulfation to quercetin-3′-sulfate (7% of quercetin-7-glucuronide at a rate of 0.42 nmol/hr/10 6 cells and 10% of quercetin-3-glucuronide at a rate of 0.61 nmol/hr/10 6 cells, over 48 hr). In contrast, quercetin-4′-glucuronide was not metabolised, and interestingly this is not a major product of the small intestine absorption process. The conversion of the quercetin-7- and quercetin-3-glucuronide to the mono-sulfate conjugate shows intracellular deglucuronidation by β-glucuronidase activity, allowing transient contact of the free aglycone with the cellular environment. Inhibition of methylation using a catechol- O-methyltransferase inhibitor shifted metabolism towards sulfation, as indicated by an increase in quercetin-3′-sulfate formation (increase in rate to 1.13 and 1.43 nmol/hr/10 6 cells for quercetin-7-glucuronide and quercetin-3-glucuronide, respectively). Efflux of quercetin metabolites from HepG2 cells (methylated glucuronide and sulfate conjugates) was not altered by verapamil, a p-glycoprotein inhibitor, but efflux was competitively inhibited by MK-571, a multidrug resistant protein inhibitor, indicating a role for multidrug resistant protein in the efflux of quercetin conjugates from HepG2 cells. These results show that HepG2 cells can absorb and turnover quercetin glucuronides and that human endogenous β-glucuronidase activity could modulate the intracellular biological activities of dietary antioxidant flavonoids.</description><subject>Biological and medical sciences</subject><subject>Catechol O-Methyltransferase - metabolism</subject><subject>Cell Extracts</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Flavonoids</subject><subject>General and cellular metabolism. Vitamins</subject><subject>Glucuronidase - antagonists &amp; inhibitors</subject><subject>Glucuronidase - metabolism</subject><subject>Glucuronides</subject><subject>Glucuronides - chemistry</subject><subject>Glucuronides - metabolism</subject><subject>HepG2 cells</subject><subject>Human</subject><subject>Humans</subject><subject>Liver - enzymology</subject><subject>Liver - metabolism</subject><subject>Medical sciences</subject><subject>Metabolism</subject><subject>Mitochondrial Proteins</subject><subject>Pharmacology. Drug treatments</subject><subject>Quercetin - chemistry</subject><subject>Quercetin - metabolism</subject><subject>Ribosomal Proteins - metabolism</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Sulfotransferases - metabolism</subject><subject>Tumor Cells, Cultured</subject><subject>β-Glucuronidase</subject><issn>0006-2952</issn><issn>1873-2968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkduKFDEQhoMo7rj6CEpulF0wmvQhPe2NyOIJdlnxcB3S1RUnku7MJumBeS0fxMfwOUzPDLtzJwRCKl9V_vw_IU8FfyW4kK-_cc4lK9q6OOPFORe14EzcIwuxbMpclsv7ZHGLnJBHMf6aj0spHpITUdRFU1ZiQf5eYdKddzYO1Bt6M2EATHZkDaN67I8KJfvpJpiCH22PkXbbfE_tSDc2BU9XuNbJAh18j-4NTSukwTucZ66mIZN_fh_164gvaZyc8SnoMRoMuwrohLDyjtFrNmBabd3R9U7OMLlkWcBoY9JjouvgE2YRBT27-vqlOJ8FGac3fvQ207d_e0weGO0iPjnsp-THh_ffLz6xy-uPny_eXTKoqjKxbFWlpWjrEqSAvuDQGKy7pZDZ0Sbvoq-4hE6DNkZKFLxpoBE9aF5i22F5Sl7s52Zh2bqY1GAjoHN6RD9F1eQ5La9kBus9CMHHGNCodbCDDlsluJoDVruA1Zye4nnNASuR-54dHpi6Afu7rkOiGXh-AHQE7Uw2EGy846qqbYWsM_d2z2G2Y2MxqAgWR8DeBoSkem__I-UfoXbHrg</recordid><startdate>20030201</startdate><enddate>20030201</enddate><creator>O’Leary, Karen A</creator><creator>Day, Andrea J</creator><creator>Needs, Paul W</creator><creator>Mellon, Fred A</creator><creator>O’Brien, Nora M</creator><creator>Williamson, Gary</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030201</creationdate><title>Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: the role of human β-glucuronidase, sulfotransferase, catechol- O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism</title><author>O’Leary, Karen A ; Day, Andrea J ; Needs, Paul W ; Mellon, Fred A ; O’Brien, Nora M ; Williamson, Gary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-9524a61953c61cd20c7fe5b8162967b811d406cbacaff66e1077c71dca03e9be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Biological and medical sciences</topic><topic>Catechol O-Methyltransferase - metabolism</topic><topic>Cell Extracts</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Flavonoids</topic><topic>General and cellular metabolism. Vitamins</topic><topic>Glucuronidase - antagonists &amp; inhibitors</topic><topic>Glucuronidase - metabolism</topic><topic>Glucuronides</topic><topic>Glucuronides - chemistry</topic><topic>Glucuronides - metabolism</topic><topic>HepG2 cells</topic><topic>Human</topic><topic>Humans</topic><topic>Liver - enzymology</topic><topic>Liver - metabolism</topic><topic>Medical sciences</topic><topic>Metabolism</topic><topic>Mitochondrial Proteins</topic><topic>Pharmacology. Drug treatments</topic><topic>Quercetin - chemistry</topic><topic>Quercetin - metabolism</topic><topic>Ribosomal Proteins - metabolism</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Sulfotransferases - metabolism</topic><topic>Tumor Cells, Cultured</topic><topic>β-Glucuronidase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O’Leary, Karen A</creatorcontrib><creatorcontrib>Day, Andrea J</creatorcontrib><creatorcontrib>Needs, Paul W</creatorcontrib><creatorcontrib>Mellon, Fred A</creatorcontrib><creatorcontrib>O’Brien, Nora M</creatorcontrib><creatorcontrib>Williamson, Gary</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O’Leary, Karen A</au><au>Day, Andrea J</au><au>Needs, Paul W</au><au>Mellon, Fred A</au><au>O’Brien, Nora M</au><au>Williamson, Gary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: the role of human β-glucuronidase, sulfotransferase, catechol- O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism</atitle><jtitle>Biochemical pharmacology</jtitle><addtitle>Biochem Pharmacol</addtitle><date>2003-02-01</date><risdate>2003</risdate><volume>65</volume><issue>3</issue><spage>479</spage><epage>491</epage><pages>479-491</pages><issn>0006-2952</issn><eissn>1873-2968</eissn><coden>BCPCA6</coden><abstract>Quercetin-3- and quercetin-7-glucuronides are major products of small intestine epithelial cell metabolism (J. Nutr. 130 (2000) 2765) but it is not known if quercetin glucuronides can be further processed in the liver or if they are excreted directly. Using the HepG2 hepatic cell model, we show that highly purified quercetin-7- and quercetin-3-glucuronides can follow two pathways of metabolism: (i) methylation of the catechol functional group of both quercetin glucuronides (44% of quercetin-7-glucuronide at a rate of 2.6 nmol/hr/10 6 cells, and 32% of quercetin-3-glucuronide at a rate of 1.9 nmol/hr/10 6 cells, over 48 hr) or (ii) hydrolysis of the glucuronide by endogenous β-glucuronidase followed by sulfation to quercetin-3′-sulfate (7% of quercetin-7-glucuronide at a rate of 0.42 nmol/hr/10 6 cells and 10% of quercetin-3-glucuronide at a rate of 0.61 nmol/hr/10 6 cells, over 48 hr). In contrast, quercetin-4′-glucuronide was not metabolised, and interestingly this is not a major product of the small intestine absorption process. The conversion of the quercetin-7- and quercetin-3-glucuronide to the mono-sulfate conjugate shows intracellular deglucuronidation by β-glucuronidase activity, allowing transient contact of the free aglycone with the cellular environment. Inhibition of methylation using a catechol- O-methyltransferase inhibitor shifted metabolism towards sulfation, as indicated by an increase in quercetin-3′-sulfate formation (increase in rate to 1.13 and 1.43 nmol/hr/10 6 cells for quercetin-7-glucuronide and quercetin-3-glucuronide, respectively). Efflux of quercetin metabolites from HepG2 cells (methylated glucuronide and sulfate conjugates) was not altered by verapamil, a p-glycoprotein inhibitor, but efflux was competitively inhibited by MK-571, a multidrug resistant protein inhibitor, indicating a role for multidrug resistant protein in the efflux of quercetin conjugates from HepG2 cells. These results show that HepG2 cells can absorb and turnover quercetin glucuronides and that human endogenous β-glucuronidase activity could modulate the intracellular biological activities of dietary antioxidant flavonoids.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>12527341</pmid><doi>10.1016/S0006-2952(02)01510-1</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2952
ispartof Biochemical pharmacology, 2003-02, Vol.65 (3), p.479-491
issn 0006-2952
1873-2968
language eng
recordid cdi_proquest_miscellaneous_72969046
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Biological and medical sciences
Catechol O-Methyltransferase - metabolism
Cell Extracts
Enzyme Inhibitors - pharmacology
Flavonoids
General and cellular metabolism. Vitamins
Glucuronidase - antagonists & inhibitors
Glucuronidase - metabolism
Glucuronides
Glucuronides - chemistry
Glucuronides - metabolism
HepG2 cells
Human
Humans
Liver - enzymology
Liver - metabolism
Medical sciences
Metabolism
Mitochondrial Proteins
Pharmacology. Drug treatments
Quercetin - chemistry
Quercetin - metabolism
Ribosomal Proteins - metabolism
Saccharomyces cerevisiae Proteins
Sulfotransferases - metabolism
Tumor Cells, Cultured
β-Glucuronidase
title Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: the role of human β-glucuronidase, sulfotransferase, catechol- O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T03%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolism%20of%20quercetin-7-%20and%20quercetin-3-glucuronides%20by%20an%20in%20vitro%20hepatic%20model:%20the%20role%20of%20human%20%CE%B2-glucuronidase,%20sulfotransferase,%20catechol-%20O-methyltransferase%20and%20multi-resistant%20protein%202%20(MRP2)%20in%20flavonoid%20metabolism&rft.jtitle=Biochemical%20pharmacology&rft.au=O%E2%80%99Leary,%20Karen%20A&rft.date=2003-02-01&rft.volume=65&rft.issue=3&rft.spage=479&rft.epage=491&rft.pages=479-491&rft.issn=0006-2952&rft.eissn=1873-2968&rft.coden=BCPCA6&rft_id=info:doi/10.1016/S0006-2952(02)01510-1&rft_dat=%3Cproquest_cross%3E72969046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72969046&rft_id=info:pmid/12527341&rft_els_id=S0006295202015101&rfr_iscdi=true