Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: the role of human β-glucuronidase, sulfotransferase, catechol- O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism
Quercetin-3- and quercetin-7-glucuronides are major products of small intestine epithelial cell metabolism (J. Nutr. 130 (2000) 2765) but it is not known if quercetin glucuronides can be further processed in the liver or if they are excreted directly. Using the HepG2 hepatic cell model, we show that...
Gespeichert in:
Veröffentlicht in: | Biochemical pharmacology 2003-02, Vol.65 (3), p.479-491 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 491 |
---|---|
container_issue | 3 |
container_start_page | 479 |
container_title | Biochemical pharmacology |
container_volume | 65 |
creator | O’Leary, Karen A Day, Andrea J Needs, Paul W Mellon, Fred A O’Brien, Nora M Williamson, Gary |
description | Quercetin-3- and quercetin-7-glucuronides are major products of small intestine epithelial cell metabolism (J. Nutr. 130 (2000) 2765) but it is not known if quercetin glucuronides can be further processed in the liver or if they are excreted directly. Using the HepG2 hepatic cell model, we show that highly purified quercetin-7- and quercetin-3-glucuronides can follow two pathways of metabolism: (i) methylation of the catechol functional group of both quercetin glucuronides (44% of quercetin-7-glucuronide at a rate of 2.6
nmol/hr/10
6 cells, and 32% of quercetin-3-glucuronide at a rate of 1.9
nmol/hr/10
6 cells, over 48
hr) or (ii) hydrolysis of the glucuronide by endogenous β-glucuronidase followed by sulfation to quercetin-3′-sulfate (7% of quercetin-7-glucuronide at a rate of 0.42
nmol/hr/10
6 cells and 10% of quercetin-3-glucuronide at a rate of 0.61
nmol/hr/10
6 cells, over 48
hr). In contrast, quercetin-4′-glucuronide was not metabolised, and interestingly this is not a major product of the small intestine absorption process. The conversion of the quercetin-7- and quercetin-3-glucuronide to the mono-sulfate conjugate shows intracellular deglucuronidation by β-glucuronidase activity, allowing transient contact of the free aglycone with the cellular environment. Inhibition of methylation using a catechol-
O-methyltransferase inhibitor shifted metabolism towards sulfation, as indicated by an increase in quercetin-3′-sulfate formation (increase in rate to 1.13 and 1.43
nmol/hr/10
6 cells for quercetin-7-glucuronide and quercetin-3-glucuronide, respectively). Efflux of quercetin metabolites from HepG2 cells (methylated glucuronide and sulfate conjugates) was not altered by verapamil, a
p-glycoprotein inhibitor, but efflux was competitively inhibited by MK-571, a multidrug resistant protein inhibitor, indicating a role for multidrug resistant protein in the efflux of quercetin conjugates from HepG2 cells. These results show that HepG2 cells can absorb and turnover quercetin glucuronides and that human endogenous β-glucuronidase activity could modulate the intracellular biological activities of dietary antioxidant flavonoids. |
doi_str_mv | 10.1016/S0006-2952(02)01510-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72969046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006295202015101</els_id><sourcerecordid>72969046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-9524a61953c61cd20c7fe5b8162967b811d406cbacaff66e1077c71dca03e9be3</originalsourceid><addsrcrecordid>eNqFkduKFDEQhoMo7rj6CEpulF0wmvQhPe2NyOIJdlnxcB3S1RUnku7MJumBeS0fxMfwOUzPDLtzJwRCKl9V_vw_IU8FfyW4kK-_cc4lK9q6OOPFORe14EzcIwuxbMpclsv7ZHGLnJBHMf6aj0spHpITUdRFU1ZiQf5eYdKddzYO1Bt6M2EATHZkDaN67I8KJfvpJpiCH22PkXbbfE_tSDc2BU9XuNbJAh18j-4NTSukwTucZ66mIZN_fh_164gvaZyc8SnoMRoMuwrohLDyjtFrNmBabd3R9U7OMLlkWcBoY9JjouvgE2YRBT27-vqlOJ8FGac3fvQ207d_e0weGO0iPjnsp-THh_ffLz6xy-uPny_eXTKoqjKxbFWlpWjrEqSAvuDQGKy7pZDZ0Sbvoq-4hE6DNkZKFLxpoBE9aF5i22F5Sl7s52Zh2bqY1GAjoHN6RD9F1eQ5La9kBus9CMHHGNCodbCDDlsluJoDVruA1Zye4nnNASuR-54dHpi6Afu7rkOiGXh-AHQE7Uw2EGy846qqbYWsM_d2z2G2Y2MxqAgWR8DeBoSkem__I-UfoXbHrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72969046</pqid></control><display><type>article</type><title>Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: the role of human β-glucuronidase, sulfotransferase, catechol- O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>O’Leary, Karen A ; Day, Andrea J ; Needs, Paul W ; Mellon, Fred A ; O’Brien, Nora M ; Williamson, Gary</creator><creatorcontrib>O’Leary, Karen A ; Day, Andrea J ; Needs, Paul W ; Mellon, Fred A ; O’Brien, Nora M ; Williamson, Gary</creatorcontrib><description>Quercetin-3- and quercetin-7-glucuronides are major products of small intestine epithelial cell metabolism (J. Nutr. 130 (2000) 2765) but it is not known if quercetin glucuronides can be further processed in the liver or if they are excreted directly. Using the HepG2 hepatic cell model, we show that highly purified quercetin-7- and quercetin-3-glucuronides can follow two pathways of metabolism: (i) methylation of the catechol functional group of both quercetin glucuronides (44% of quercetin-7-glucuronide at a rate of 2.6
nmol/hr/10
6 cells, and 32% of quercetin-3-glucuronide at a rate of 1.9
nmol/hr/10
6 cells, over 48
hr) or (ii) hydrolysis of the glucuronide by endogenous β-glucuronidase followed by sulfation to quercetin-3′-sulfate (7% of quercetin-7-glucuronide at a rate of 0.42
nmol/hr/10
6 cells and 10% of quercetin-3-glucuronide at a rate of 0.61
nmol/hr/10
6 cells, over 48
hr). In contrast, quercetin-4′-glucuronide was not metabolised, and interestingly this is not a major product of the small intestine absorption process. The conversion of the quercetin-7- and quercetin-3-glucuronide to the mono-sulfate conjugate shows intracellular deglucuronidation by β-glucuronidase activity, allowing transient contact of the free aglycone with the cellular environment. Inhibition of methylation using a catechol-
O-methyltransferase inhibitor shifted metabolism towards sulfation, as indicated by an increase in quercetin-3′-sulfate formation (increase in rate to 1.13 and 1.43
nmol/hr/10
6 cells for quercetin-7-glucuronide and quercetin-3-glucuronide, respectively). Efflux of quercetin metabolites from HepG2 cells (methylated glucuronide and sulfate conjugates) was not altered by verapamil, a
p-glycoprotein inhibitor, but efflux was competitively inhibited by MK-571, a multidrug resistant protein inhibitor, indicating a role for multidrug resistant protein in the efflux of quercetin conjugates from HepG2 cells. These results show that HepG2 cells can absorb and turnover quercetin glucuronides and that human endogenous β-glucuronidase activity could modulate the intracellular biological activities of dietary antioxidant flavonoids.</description><identifier>ISSN: 0006-2952</identifier><identifier>EISSN: 1873-2968</identifier><identifier>DOI: 10.1016/S0006-2952(02)01510-1</identifier><identifier>PMID: 12527341</identifier><identifier>CODEN: BCPCA6</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Biological and medical sciences ; Catechol O-Methyltransferase - metabolism ; Cell Extracts ; Enzyme Inhibitors - pharmacology ; Flavonoids ; General and cellular metabolism. Vitamins ; Glucuronidase - antagonists & inhibitors ; Glucuronidase - metabolism ; Glucuronides ; Glucuronides - chemistry ; Glucuronides - metabolism ; HepG2 cells ; Human ; Humans ; Liver - enzymology ; Liver - metabolism ; Medical sciences ; Metabolism ; Mitochondrial Proteins ; Pharmacology. Drug treatments ; Quercetin - chemistry ; Quercetin - metabolism ; Ribosomal Proteins - metabolism ; Saccharomyces cerevisiae Proteins ; Sulfotransferases - metabolism ; Tumor Cells, Cultured ; β-Glucuronidase</subject><ispartof>Biochemical pharmacology, 2003-02, Vol.65 (3), p.479-491</ispartof><rights>2002 Elsevier Science Inc.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-9524a61953c61cd20c7fe5b8162967b811d406cbacaff66e1077c71dca03e9be3</citedby><cites>FETCH-LOGICAL-c443t-9524a61953c61cd20c7fe5b8162967b811d406cbacaff66e1077c71dca03e9be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-2952(02)01510-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14499165$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12527341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O’Leary, Karen A</creatorcontrib><creatorcontrib>Day, Andrea J</creatorcontrib><creatorcontrib>Needs, Paul W</creatorcontrib><creatorcontrib>Mellon, Fred A</creatorcontrib><creatorcontrib>O’Brien, Nora M</creatorcontrib><creatorcontrib>Williamson, Gary</creatorcontrib><title>Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: the role of human β-glucuronidase, sulfotransferase, catechol- O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism</title><title>Biochemical pharmacology</title><addtitle>Biochem Pharmacol</addtitle><description>Quercetin-3- and quercetin-7-glucuronides are major products of small intestine epithelial cell metabolism (J. Nutr. 130 (2000) 2765) but it is not known if quercetin glucuronides can be further processed in the liver or if they are excreted directly. Using the HepG2 hepatic cell model, we show that highly purified quercetin-7- and quercetin-3-glucuronides can follow two pathways of metabolism: (i) methylation of the catechol functional group of both quercetin glucuronides (44% of quercetin-7-glucuronide at a rate of 2.6
nmol/hr/10
6 cells, and 32% of quercetin-3-glucuronide at a rate of 1.9
nmol/hr/10
6 cells, over 48
hr) or (ii) hydrolysis of the glucuronide by endogenous β-glucuronidase followed by sulfation to quercetin-3′-sulfate (7% of quercetin-7-glucuronide at a rate of 0.42
nmol/hr/10
6 cells and 10% of quercetin-3-glucuronide at a rate of 0.61
nmol/hr/10
6 cells, over 48
hr). In contrast, quercetin-4′-glucuronide was not metabolised, and interestingly this is not a major product of the small intestine absorption process. The conversion of the quercetin-7- and quercetin-3-glucuronide to the mono-sulfate conjugate shows intracellular deglucuronidation by β-glucuronidase activity, allowing transient contact of the free aglycone with the cellular environment. Inhibition of methylation using a catechol-
O-methyltransferase inhibitor shifted metabolism towards sulfation, as indicated by an increase in quercetin-3′-sulfate formation (increase in rate to 1.13 and 1.43
nmol/hr/10
6 cells for quercetin-7-glucuronide and quercetin-3-glucuronide, respectively). Efflux of quercetin metabolites from HepG2 cells (methylated glucuronide and sulfate conjugates) was not altered by verapamil, a
p-glycoprotein inhibitor, but efflux was competitively inhibited by MK-571, a multidrug resistant protein inhibitor, indicating a role for multidrug resistant protein in the efflux of quercetin conjugates from HepG2 cells. These results show that HepG2 cells can absorb and turnover quercetin glucuronides and that human endogenous β-glucuronidase activity could modulate the intracellular biological activities of dietary antioxidant flavonoids.</description><subject>Biological and medical sciences</subject><subject>Catechol O-Methyltransferase - metabolism</subject><subject>Cell Extracts</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Flavonoids</subject><subject>General and cellular metabolism. Vitamins</subject><subject>Glucuronidase - antagonists & inhibitors</subject><subject>Glucuronidase - metabolism</subject><subject>Glucuronides</subject><subject>Glucuronides - chemistry</subject><subject>Glucuronides - metabolism</subject><subject>HepG2 cells</subject><subject>Human</subject><subject>Humans</subject><subject>Liver - enzymology</subject><subject>Liver - metabolism</subject><subject>Medical sciences</subject><subject>Metabolism</subject><subject>Mitochondrial Proteins</subject><subject>Pharmacology. Drug treatments</subject><subject>Quercetin - chemistry</subject><subject>Quercetin - metabolism</subject><subject>Ribosomal Proteins - metabolism</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Sulfotransferases - metabolism</subject><subject>Tumor Cells, Cultured</subject><subject>β-Glucuronidase</subject><issn>0006-2952</issn><issn>1873-2968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkduKFDEQhoMo7rj6CEpulF0wmvQhPe2NyOIJdlnxcB3S1RUnku7MJumBeS0fxMfwOUzPDLtzJwRCKl9V_vw_IU8FfyW4kK-_cc4lK9q6OOPFORe14EzcIwuxbMpclsv7ZHGLnJBHMf6aj0spHpITUdRFU1ZiQf5eYdKddzYO1Bt6M2EATHZkDaN67I8KJfvpJpiCH22PkXbbfE_tSDc2BU9XuNbJAh18j-4NTSukwTucZ66mIZN_fh_164gvaZyc8SnoMRoMuwrohLDyjtFrNmBabd3R9U7OMLlkWcBoY9JjouvgE2YRBT27-vqlOJ8FGac3fvQ207d_e0weGO0iPjnsp-THh_ffLz6xy-uPny_eXTKoqjKxbFWlpWjrEqSAvuDQGKy7pZDZ0Sbvoq-4hE6DNkZKFLxpoBE9aF5i22F5Sl7s52Zh2bqY1GAjoHN6RD9F1eQ5La9kBus9CMHHGNCodbCDDlsluJoDVruA1Zye4nnNASuR-54dHpi6Afu7rkOiGXh-AHQE7Uw2EGy846qqbYWsM_d2z2G2Y2MxqAgWR8DeBoSkem__I-UfoXbHrg</recordid><startdate>20030201</startdate><enddate>20030201</enddate><creator>O’Leary, Karen A</creator><creator>Day, Andrea J</creator><creator>Needs, Paul W</creator><creator>Mellon, Fred A</creator><creator>O’Brien, Nora M</creator><creator>Williamson, Gary</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030201</creationdate><title>Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: the role of human β-glucuronidase, sulfotransferase, catechol- O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism</title><author>O’Leary, Karen A ; Day, Andrea J ; Needs, Paul W ; Mellon, Fred A ; O’Brien, Nora M ; Williamson, Gary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-9524a61953c61cd20c7fe5b8162967b811d406cbacaff66e1077c71dca03e9be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Biological and medical sciences</topic><topic>Catechol O-Methyltransferase - metabolism</topic><topic>Cell Extracts</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Flavonoids</topic><topic>General and cellular metabolism. Vitamins</topic><topic>Glucuronidase - antagonists & inhibitors</topic><topic>Glucuronidase - metabolism</topic><topic>Glucuronides</topic><topic>Glucuronides - chemistry</topic><topic>Glucuronides - metabolism</topic><topic>HepG2 cells</topic><topic>Human</topic><topic>Humans</topic><topic>Liver - enzymology</topic><topic>Liver - metabolism</topic><topic>Medical sciences</topic><topic>Metabolism</topic><topic>Mitochondrial Proteins</topic><topic>Pharmacology. Drug treatments</topic><topic>Quercetin - chemistry</topic><topic>Quercetin - metabolism</topic><topic>Ribosomal Proteins - metabolism</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Sulfotransferases - metabolism</topic><topic>Tumor Cells, Cultured</topic><topic>β-Glucuronidase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O’Leary, Karen A</creatorcontrib><creatorcontrib>Day, Andrea J</creatorcontrib><creatorcontrib>Needs, Paul W</creatorcontrib><creatorcontrib>Mellon, Fred A</creatorcontrib><creatorcontrib>O’Brien, Nora M</creatorcontrib><creatorcontrib>Williamson, Gary</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O’Leary, Karen A</au><au>Day, Andrea J</au><au>Needs, Paul W</au><au>Mellon, Fred A</au><au>O’Brien, Nora M</au><au>Williamson, Gary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: the role of human β-glucuronidase, sulfotransferase, catechol- O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism</atitle><jtitle>Biochemical pharmacology</jtitle><addtitle>Biochem Pharmacol</addtitle><date>2003-02-01</date><risdate>2003</risdate><volume>65</volume><issue>3</issue><spage>479</spage><epage>491</epage><pages>479-491</pages><issn>0006-2952</issn><eissn>1873-2968</eissn><coden>BCPCA6</coden><abstract>Quercetin-3- and quercetin-7-glucuronides are major products of small intestine epithelial cell metabolism (J. Nutr. 130 (2000) 2765) but it is not known if quercetin glucuronides can be further processed in the liver or if they are excreted directly. Using the HepG2 hepatic cell model, we show that highly purified quercetin-7- and quercetin-3-glucuronides can follow two pathways of metabolism: (i) methylation of the catechol functional group of both quercetin glucuronides (44% of quercetin-7-glucuronide at a rate of 2.6
nmol/hr/10
6 cells, and 32% of quercetin-3-glucuronide at a rate of 1.9
nmol/hr/10
6 cells, over 48
hr) or (ii) hydrolysis of the glucuronide by endogenous β-glucuronidase followed by sulfation to quercetin-3′-sulfate (7% of quercetin-7-glucuronide at a rate of 0.42
nmol/hr/10
6 cells and 10% of quercetin-3-glucuronide at a rate of 0.61
nmol/hr/10
6 cells, over 48
hr). In contrast, quercetin-4′-glucuronide was not metabolised, and interestingly this is not a major product of the small intestine absorption process. The conversion of the quercetin-7- and quercetin-3-glucuronide to the mono-sulfate conjugate shows intracellular deglucuronidation by β-glucuronidase activity, allowing transient contact of the free aglycone with the cellular environment. Inhibition of methylation using a catechol-
O-methyltransferase inhibitor shifted metabolism towards sulfation, as indicated by an increase in quercetin-3′-sulfate formation (increase in rate to 1.13 and 1.43
nmol/hr/10
6 cells for quercetin-7-glucuronide and quercetin-3-glucuronide, respectively). Efflux of quercetin metabolites from HepG2 cells (methylated glucuronide and sulfate conjugates) was not altered by verapamil, a
p-glycoprotein inhibitor, but efflux was competitively inhibited by MK-571, a multidrug resistant protein inhibitor, indicating a role for multidrug resistant protein in the efflux of quercetin conjugates from HepG2 cells. These results show that HepG2 cells can absorb and turnover quercetin glucuronides and that human endogenous β-glucuronidase activity could modulate the intracellular biological activities of dietary antioxidant flavonoids.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>12527341</pmid><doi>10.1016/S0006-2952(02)01510-1</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2952 |
ispartof | Biochemical pharmacology, 2003-02, Vol.65 (3), p.479-491 |
issn | 0006-2952 1873-2968 |
language | eng |
recordid | cdi_proquest_miscellaneous_72969046 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Biological and medical sciences Catechol O-Methyltransferase - metabolism Cell Extracts Enzyme Inhibitors - pharmacology Flavonoids General and cellular metabolism. Vitamins Glucuronidase - antagonists & inhibitors Glucuronidase - metabolism Glucuronides Glucuronides - chemistry Glucuronides - metabolism HepG2 cells Human Humans Liver - enzymology Liver - metabolism Medical sciences Metabolism Mitochondrial Proteins Pharmacology. Drug treatments Quercetin - chemistry Quercetin - metabolism Ribosomal Proteins - metabolism Saccharomyces cerevisiae Proteins Sulfotransferases - metabolism Tumor Cells, Cultured β-Glucuronidase |
title | Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: the role of human β-glucuronidase, sulfotransferase, catechol- O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T03%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolism%20of%20quercetin-7-%20and%20quercetin-3-glucuronides%20by%20an%20in%20vitro%20hepatic%20model:%20the%20role%20of%20human%20%CE%B2-glucuronidase,%20sulfotransferase,%20catechol-%20O-methyltransferase%20and%20multi-resistant%20protein%202%20(MRP2)%20in%20flavonoid%20metabolism&rft.jtitle=Biochemical%20pharmacology&rft.au=O%E2%80%99Leary,%20Karen%20A&rft.date=2003-02-01&rft.volume=65&rft.issue=3&rft.spage=479&rft.epage=491&rft.pages=479-491&rft.issn=0006-2952&rft.eissn=1873-2968&rft.coden=BCPCA6&rft_id=info:doi/10.1016/S0006-2952(02)01510-1&rft_dat=%3Cproquest_cross%3E72969046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72969046&rft_id=info:pmid/12527341&rft_els_id=S0006295202015101&rfr_iscdi=true |