Identification of estrogenic tamoxifen metabolite(s) in tamoxifen-resistant human breast tumors

We have shown previously that acquired tamoxifen resistance in an in vivo experimental model is associated with reduced tamoxifen accumulation, isomerization of trans-4-hydroxytamoxifen, and tamoxifen-stimulated tumor growth. The purpose of this study is to isolate and verify the presence of estroge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical oncology 1992-06, Vol.10 (6), p.990-994
Hauptverfasser: WIEBE, V. J, OSBORNE, C. K, MCGUIRE, W. L, DEGREGORIO, M. W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have shown previously that acquired tamoxifen resistance in an in vivo experimental model is associated with reduced tamoxifen accumulation, isomerization of trans-4-hydroxytamoxifen, and tamoxifen-stimulated tumor growth. The purpose of this study is to isolate and verify the presence of estrogenic tamoxifen metabolites in human breast tumors using high-performance liquid chromatography (HPLC) and mass-spectrometry (MS) techniques. In the present study, we used HPLC and MS to identify the presence of estrogenic metabolites in tumor samples excised from athymic nude mice and in human breast tumors isolated from patients receiving adjuvant tamoxifen therapy. We identified the presence of metabolite E, a known estrogenic metabolite of tamoxifen, in tamoxifen-resistant MCF-7 human breast tumors implanted in athymic nude mice, as well as in tumors from patients with clinical resistance. Additionally, we separated another estrogenic metabolite, bisphenol, by HPLC, and this was also tentatively confirmed by MS analysis. These data suggest that cellular tamoxifen metabolism to estrogenic metabolites may in part contribute to stimulating the growth of hormone-responsive breast tumors following prolonged exposure to tamoxifen. Further evaluation of the relationship between cellular metabolism and acquired tamoxifen resistance is warranted.
ISSN:0732-183X
1527-7755
DOI:10.1200/JCO.1992.10.6.990