P-type ATPases in Caenorhabditis and Drosophila: implications for evolution of the P-type ATPase subunit families with special reference to the Na,K-ATPase and H,K-ATPase subgroup

Here we show a complete list of the P-type ATPase genes in Caenorhabditis elegans and Drosophila melanogaster. A detailed comparison of the deduced amino-acid sequences in combination with phylogenetic and chromosomal analyses has revealed the following: (1) The diversity of this gene family has bee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of membrane biology 2003-01, Vol.191 (1), p.13-24
Hauptverfasser: Okamura, H, Yasuhara, J C, Fambrough, D M, Takeyasu, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 1
container_start_page 13
container_title The Journal of membrane biology
container_volume 191
creator Okamura, H
Yasuhara, J C
Fambrough, D M
Takeyasu, K
description Here we show a complete list of the P-type ATPase genes in Caenorhabditis elegans and Drosophila melanogaster. A detailed comparison of the deduced amino-acid sequences in combination with phylogenetic and chromosomal analyses has revealed the following: (1) The diversity of this gene family has been achieved by two major evolutionary steps; the establishment of the major P-type ATPase subgroups with distinct substrate (ion) specificities in a common ancestor of vertebrate and invertebrate, followed by the evolution of multiple isoforms occurring independently in vertebrate and invertebrate phyla. (2) Pairs of genes that have intimate phylogenetic relationship are frequently found in proximity on the same chromosome. (3) Some of the Na,K- and H,K-ATPase isoforms in D. melanogaster and C. elegans lack motifs shown to be important for alpha/beta-subunit assembly, suggesting that such alpha- and beta-subunits might exist by themselves (lonely subunits). The mutation rates for these subunits are much faster than those for the subunits with recognizable assembly domains. (4) The lonely alpha-subunits also lack the major site for ouabain binding that apparently arose before the separation of vertebrates and invertebrates and thus well before the separation of vertebrate Na,K-ATPases and H,K-ATPases. These findings support the idea that a relaxation of functional constraints would increase the rate of evolution and provide clues for identifying the origins of inhibitor sensitivity, subunit assembly, and separation of Na,K- and H,K-ATPases.
doi_str_mv 10.1007/s00232-002-1041-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72956668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72956668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-e6218aa2cce6164232e8066aa91bb0f4e2f7c6be19ce0163c08bde904f17a6083</originalsourceid><addsrcrecordid>eNpdUU1v1DAQtRCIbgs_oJfK6qGnGjyOY-_2Vm0LRVTQQzlbjnfSdZXEqe2A-rv4gzjsShVcxprxe28-HiHHwD8A5_pj4lxUgpXIgEtg9SuyAFkqIIV8TRblQzChKjgghyk9cg5aK_mWHICoKyF0tSC_71h-HpFe3t_ZhIn6ga4tDiFubbPx2Sdqhw29iiGFces7e0F9P3be2ezDkGgbIsWfoZvmlIaW5i3SfyRpmppp8Jm2tvedLy1--bylaUTnbUcjthhxcEhz-Ev-Zs-_sj11bn3zkhalhxim8R1509ou4fv9e0R-fLq-X9-w2--fv6wvb5mrhMwMlYCltcI5VKBkuRQuuVLWrqBpeCtRtNqpBmHlkIOqHF82G1xx2YK2ii-rI3K20x1jeJowZdP75LDr7IBhSkaLVa2UmoGn_wEfwxSHMpsRoGUNGuoCgh3IlWOmsrcZo-9tfDbAzWyn2dlpSjSznWbmnOyFp6bHzQtj71_1B9Xfm7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217451715</pqid></control><display><type>article</type><title>P-type ATPases in Caenorhabditis and Drosophila: implications for evolution of the P-type ATPase subunit families with special reference to the Na,K-ATPase and H,K-ATPase subgroup</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Okamura, H ; Yasuhara, J C ; Fambrough, D M ; Takeyasu, K</creator><creatorcontrib>Okamura, H ; Yasuhara, J C ; Fambrough, D M ; Takeyasu, K</creatorcontrib><description>Here we show a complete list of the P-type ATPase genes in Caenorhabditis elegans and Drosophila melanogaster. A detailed comparison of the deduced amino-acid sequences in combination with phylogenetic and chromosomal analyses has revealed the following: (1) The diversity of this gene family has been achieved by two major evolutionary steps; the establishment of the major P-type ATPase subgroups with distinct substrate (ion) specificities in a common ancestor of vertebrate and invertebrate, followed by the evolution of multiple isoforms occurring independently in vertebrate and invertebrate phyla. (2) Pairs of genes that have intimate phylogenetic relationship are frequently found in proximity on the same chromosome. (3) Some of the Na,K- and H,K-ATPase isoforms in D. melanogaster and C. elegans lack motifs shown to be important for alpha/beta-subunit assembly, suggesting that such alpha- and beta-subunits might exist by themselves (lonely subunits). The mutation rates for these subunits are much faster than those for the subunits with recognizable assembly domains. (4) The lonely alpha-subunits also lack the major site for ouabain binding that apparently arose before the separation of vertebrates and invertebrates and thus well before the separation of vertebrate Na,K-ATPases and H,K-ATPases. These findings support the idea that a relaxation of functional constraints would increase the rate of evolution and provide clues for identifying the origins of inhibitor sensitivity, subunit assembly, and separation of Na,K- and H,K-ATPases.</description><identifier>ISSN: 0022-2631</identifier><identifier>EISSN: 1432-1424</identifier><identifier>DOI: 10.1007/s00232-002-1041-5</identifier><identifier>PMID: 12532273</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Amino Acid Sequence ; Animals ; Base Sequence ; Caenorhabditis elegans - chemistry ; Caenorhabditis elegans - enzymology ; Caenorhabditis elegans - genetics ; DNA Mutational Analysis - methods ; Drosophila melanogaster - chemistry ; Drosophila melanogaster - enzymology ; Drosophila melanogaster - genetics ; Evolution, Molecular ; Gene Expression Profiling - methods ; H(+)-K(+)-Exchanging ATPase - chemistry ; H(+)-K(+)-Exchanging ATPase - classification ; H(+)-K(+)-Exchanging ATPase - genetics ; H(+)-K(+)-Exchanging ATPase - metabolism ; Molecular Sequence Data ; Phenotype ; Protein Subunits ; Proton-Translocating ATPases - chemistry ; Proton-Translocating ATPases - classification ; Proton-Translocating ATPases - genetics ; Proton-Translocating ATPases - metabolism ; Sequence Alignment - methods ; Sequence Analysis, Protein - methods ; Sodium-Potassium-Exchanging ATPase - chemistry ; Sodium-Potassium-Exchanging ATPase - classification ; Sodium-Potassium-Exchanging ATPase - genetics ; Sodium-Potassium-Exchanging ATPase - metabolism ; Species Specificity</subject><ispartof>The Journal of membrane biology, 2003-01, Vol.191 (1), p.13-24</ispartof><rights>Copyright Springer-Verlag 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-e6218aa2cce6164232e8066aa91bb0f4e2f7c6be19ce0163c08bde904f17a6083</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12532273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Okamura, H</creatorcontrib><creatorcontrib>Yasuhara, J C</creatorcontrib><creatorcontrib>Fambrough, D M</creatorcontrib><creatorcontrib>Takeyasu, K</creatorcontrib><title>P-type ATPases in Caenorhabditis and Drosophila: implications for evolution of the P-type ATPase subunit families with special reference to the Na,K-ATPase and H,K-ATPase subgroup</title><title>The Journal of membrane biology</title><addtitle>J Membr Biol</addtitle><description>Here we show a complete list of the P-type ATPase genes in Caenorhabditis elegans and Drosophila melanogaster. A detailed comparison of the deduced amino-acid sequences in combination with phylogenetic and chromosomal analyses has revealed the following: (1) The diversity of this gene family has been achieved by two major evolutionary steps; the establishment of the major P-type ATPase subgroups with distinct substrate (ion) specificities in a common ancestor of vertebrate and invertebrate, followed by the evolution of multiple isoforms occurring independently in vertebrate and invertebrate phyla. (2) Pairs of genes that have intimate phylogenetic relationship are frequently found in proximity on the same chromosome. (3) Some of the Na,K- and H,K-ATPase isoforms in D. melanogaster and C. elegans lack motifs shown to be important for alpha/beta-subunit assembly, suggesting that such alpha- and beta-subunits might exist by themselves (lonely subunits). The mutation rates for these subunits are much faster than those for the subunits with recognizable assembly domains. (4) The lonely alpha-subunits also lack the major site for ouabain binding that apparently arose before the separation of vertebrates and invertebrates and thus well before the separation of vertebrate Na,K-ATPases and H,K-ATPases. These findings support the idea that a relaxation of functional constraints would increase the rate of evolution and provide clues for identifying the origins of inhibitor sensitivity, subunit assembly, and separation of Na,K- and H,K-ATPases.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Caenorhabditis elegans - chemistry</subject><subject>Caenorhabditis elegans - enzymology</subject><subject>Caenorhabditis elegans - genetics</subject><subject>DNA Mutational Analysis - methods</subject><subject>Drosophila melanogaster - chemistry</subject><subject>Drosophila melanogaster - enzymology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Evolution, Molecular</subject><subject>Gene Expression Profiling - methods</subject><subject>H(+)-K(+)-Exchanging ATPase - chemistry</subject><subject>H(+)-K(+)-Exchanging ATPase - classification</subject><subject>H(+)-K(+)-Exchanging ATPase - genetics</subject><subject>H(+)-K(+)-Exchanging ATPase - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Phenotype</subject><subject>Protein Subunits</subject><subject>Proton-Translocating ATPases - chemistry</subject><subject>Proton-Translocating ATPases - classification</subject><subject>Proton-Translocating ATPases - genetics</subject><subject>Proton-Translocating ATPases - metabolism</subject><subject>Sequence Alignment - methods</subject><subject>Sequence Analysis, Protein - methods</subject><subject>Sodium-Potassium-Exchanging ATPase - chemistry</subject><subject>Sodium-Potassium-Exchanging ATPase - classification</subject><subject>Sodium-Potassium-Exchanging ATPase - genetics</subject><subject>Sodium-Potassium-Exchanging ATPase - metabolism</subject><subject>Species Specificity</subject><issn>0022-2631</issn><issn>1432-1424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdUU1v1DAQtRCIbgs_oJfK6qGnGjyOY-_2Vm0LRVTQQzlbjnfSdZXEqe2A-rv4gzjsShVcxprxe28-HiHHwD8A5_pj4lxUgpXIgEtg9SuyAFkqIIV8TRblQzChKjgghyk9cg5aK_mWHICoKyF0tSC_71h-HpFe3t_ZhIn6ga4tDiFubbPx2Sdqhw29iiGFces7e0F9P3be2ezDkGgbIsWfoZvmlIaW5i3SfyRpmppp8Jm2tvedLy1--bylaUTnbUcjthhxcEhz-Ev-Zs-_sj11bn3zkhalhxim8R1509ou4fv9e0R-fLq-X9-w2--fv6wvb5mrhMwMlYCltcI5VKBkuRQuuVLWrqBpeCtRtNqpBmHlkIOqHF82G1xx2YK2ii-rI3K20x1jeJowZdP75LDr7IBhSkaLVa2UmoGn_wEfwxSHMpsRoGUNGuoCgh3IlWOmsrcZo-9tfDbAzWyn2dlpSjSznWbmnOyFp6bHzQtj71_1B9Xfm7Y</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Okamura, H</creator><creator>Yasuhara, J C</creator><creator>Fambrough, D M</creator><creator>Takeyasu, K</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20030101</creationdate><title>P-type ATPases in Caenorhabditis and Drosophila: implications for evolution of the P-type ATPase subunit families with special reference to the Na,K-ATPase and H,K-ATPase subgroup</title><author>Okamura, H ; Yasuhara, J C ; Fambrough, D M ; Takeyasu, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-e6218aa2cce6164232e8066aa91bb0f4e2f7c6be19ce0163c08bde904f17a6083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Caenorhabditis elegans - chemistry</topic><topic>Caenorhabditis elegans - enzymology</topic><topic>Caenorhabditis elegans - genetics</topic><topic>DNA Mutational Analysis - methods</topic><topic>Drosophila melanogaster - chemistry</topic><topic>Drosophila melanogaster - enzymology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Evolution, Molecular</topic><topic>Gene Expression Profiling - methods</topic><topic>H(+)-K(+)-Exchanging ATPase - chemistry</topic><topic>H(+)-K(+)-Exchanging ATPase - classification</topic><topic>H(+)-K(+)-Exchanging ATPase - genetics</topic><topic>H(+)-K(+)-Exchanging ATPase - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Phenotype</topic><topic>Protein Subunits</topic><topic>Proton-Translocating ATPases - chemistry</topic><topic>Proton-Translocating ATPases - classification</topic><topic>Proton-Translocating ATPases - genetics</topic><topic>Proton-Translocating ATPases - metabolism</topic><topic>Sequence Alignment - methods</topic><topic>Sequence Analysis, Protein - methods</topic><topic>Sodium-Potassium-Exchanging ATPase - chemistry</topic><topic>Sodium-Potassium-Exchanging ATPase - classification</topic><topic>Sodium-Potassium-Exchanging ATPase - genetics</topic><topic>Sodium-Potassium-Exchanging ATPase - metabolism</topic><topic>Species Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okamura, H</creatorcontrib><creatorcontrib>Yasuhara, J C</creatorcontrib><creatorcontrib>Fambrough, D M</creatorcontrib><creatorcontrib>Takeyasu, K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of membrane biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okamura, H</au><au>Yasuhara, J C</au><au>Fambrough, D M</au><au>Takeyasu, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P-type ATPases in Caenorhabditis and Drosophila: implications for evolution of the P-type ATPase subunit families with special reference to the Na,K-ATPase and H,K-ATPase subgroup</atitle><jtitle>The Journal of membrane biology</jtitle><addtitle>J Membr Biol</addtitle><date>2003-01-01</date><risdate>2003</risdate><volume>191</volume><issue>1</issue><spage>13</spage><epage>24</epage><pages>13-24</pages><issn>0022-2631</issn><eissn>1432-1424</eissn><abstract>Here we show a complete list of the P-type ATPase genes in Caenorhabditis elegans and Drosophila melanogaster. A detailed comparison of the deduced amino-acid sequences in combination with phylogenetic and chromosomal analyses has revealed the following: (1) The diversity of this gene family has been achieved by two major evolutionary steps; the establishment of the major P-type ATPase subgroups with distinct substrate (ion) specificities in a common ancestor of vertebrate and invertebrate, followed by the evolution of multiple isoforms occurring independently in vertebrate and invertebrate phyla. (2) Pairs of genes that have intimate phylogenetic relationship are frequently found in proximity on the same chromosome. (3) Some of the Na,K- and H,K-ATPase isoforms in D. melanogaster and C. elegans lack motifs shown to be important for alpha/beta-subunit assembly, suggesting that such alpha- and beta-subunits might exist by themselves (lonely subunits). The mutation rates for these subunits are much faster than those for the subunits with recognizable assembly domains. (4) The lonely alpha-subunits also lack the major site for ouabain binding that apparently arose before the separation of vertebrates and invertebrates and thus well before the separation of vertebrate Na,K-ATPases and H,K-ATPases. These findings support the idea that a relaxation of functional constraints would increase the rate of evolution and provide clues for identifying the origins of inhibitor sensitivity, subunit assembly, and separation of Na,K- and H,K-ATPases.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>12532273</pmid><doi>10.1007/s00232-002-1041-5</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2631
ispartof The Journal of membrane biology, 2003-01, Vol.191 (1), p.13-24
issn 0022-2631
1432-1424
language eng
recordid cdi_proquest_miscellaneous_72956668
source MEDLINE; SpringerNature Journals
subjects Amino Acid Sequence
Animals
Base Sequence
Caenorhabditis elegans - chemistry
Caenorhabditis elegans - enzymology
Caenorhabditis elegans - genetics
DNA Mutational Analysis - methods
Drosophila melanogaster - chemistry
Drosophila melanogaster - enzymology
Drosophila melanogaster - genetics
Evolution, Molecular
Gene Expression Profiling - methods
H(+)-K(+)-Exchanging ATPase - chemistry
H(+)-K(+)-Exchanging ATPase - classification
H(+)-K(+)-Exchanging ATPase - genetics
H(+)-K(+)-Exchanging ATPase - metabolism
Molecular Sequence Data
Phenotype
Protein Subunits
Proton-Translocating ATPases - chemistry
Proton-Translocating ATPases - classification
Proton-Translocating ATPases - genetics
Proton-Translocating ATPases - metabolism
Sequence Alignment - methods
Sequence Analysis, Protein - methods
Sodium-Potassium-Exchanging ATPase - chemistry
Sodium-Potassium-Exchanging ATPase - classification
Sodium-Potassium-Exchanging ATPase - genetics
Sodium-Potassium-Exchanging ATPase - metabolism
Species Specificity
title P-type ATPases in Caenorhabditis and Drosophila: implications for evolution of the P-type ATPase subunit families with special reference to the Na,K-ATPase and H,K-ATPase subgroup
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A40%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P-type%20ATPases%20in%20Caenorhabditis%20and%20Drosophila:%20implications%20for%20evolution%20of%20the%20P-type%20ATPase%20subunit%20families%20with%20special%20reference%20to%20the%20Na,K-ATPase%20and%20H,K-ATPase%20subgroup&rft.jtitle=The%20Journal%20of%20membrane%20biology&rft.au=Okamura,%20H&rft.date=2003-01-01&rft.volume=191&rft.issue=1&rft.spage=13&rft.epage=24&rft.pages=13-24&rft.issn=0022-2631&rft.eissn=1432-1424&rft_id=info:doi/10.1007/s00232-002-1041-5&rft_dat=%3Cproquest_cross%3E72956668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217451715&rft_id=info:pmid/12532273&rfr_iscdi=true