Co-translational incorporation of trans-4-hydroxyproline into recombinant proteins in bacteria
Trans-4-hydroxyproline (Hyp) in eukaryotic proteins arises from post-translational modification of proline residues. Because the modification enzyme is not present in prokaryotes, no natural means exists to incorporate Hyp into proteins synthesized in Escherichia coli. We show here that under approp...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2003-01, Vol.278 (1), p.645-650 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Trans-4-hydroxyproline (Hyp) in eukaryotic proteins arises from post-translational modification of proline residues. Because the modification enzyme is not present in prokaryotes, no natural means exists to incorporate Hyp into proteins synthesized in Escherichia coli. We show here that under appropriate culture conditions Hyp is incorporated co-translationally directly at proline codons in genes expressed in E. coli. The use of Hyp by E. coli protein synthesis machinery under typical culture conditions is not adequate to support protein synthesis; however, intracellular concentrations of Hyp sufficient to compensate for the poor use are achieved in media with hyperosmotic sodium chloride concentrations. Hyp incorporation was demonstrated in several recombinant proteins including human Type I collagen polypeptides. A fragment of the human collagen Type I (alpha1) polypeptide with global Hyp for Pro substitution forms a triple helix. Our results demonstrate a remarkable pliancy in the biosynthetic apparatus of bacteria that may be used more generally to incorporate novel amino acids into recombinant proteins. |
---|---|
ISSN: | 0021-9258 |
DOI: | 10.1074/jbc.M209364200 |