Tissue Transglutaminase Mediates Activation of RhoA and MAP Kinase Pathways during Retinoic Acid-induced Neuronal Differentiation of SH-SY5Y Cells

All-trans-retinoic acid (RA) plays a crucial role in survival and differentiation of neurons. For elucidating signaling mechanisms involved in RA-induced neuronal differentiation, we have selected SH-SY5Y cells, which are an established in vitro cell model for studying RA signaling. Here we report t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2003-01, Vol.278 (1), p.391-399
Hauptverfasser: Singh, Ugra S., Pan, Jing, Kao, Yu-Lin, Joshi, Suchitra, Young, Keri L., Baker, Kenneth M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:All-trans-retinoic acid (RA) plays a crucial role in survival and differentiation of neurons. For elucidating signaling mechanisms involved in RA-induced neuronal differentiation, we have selected SH-SY5Y cells, which are an established in vitro cell model for studying RA signaling. Here we report that RA-induced neuronal differentiation of SH-SY5Y cells is coupled with increased expression/activation of TGase andin vivo transamidation and activation of RhoA. In addition, RA promotes formation of stress fibers and focal adhesion complexes, and activation of ERK1/2, JNK1, and p38α/β/γ MAP kinases. Using C-3 exoenzyme (RhoA inhibitor) or monodansylcadaverine (TGase inhibitor), we show that transamidated RhoA regulates cytoskeletal rearrangement and activation of ERK1/2 and p38γ MAP kinases. Further, by using stable SH-SY5Y cell lines (overexpressing wild-type, C277S mutant, and antisense TGase), we demonstrate that transglutaminase activity is required for activation of RhoA, ERK1/2, JNK1, and p38γ MAP kinases. Activated MAP kinases differentially regulate RA-induced neurite outgrowth and neuronal marker expression. The results of our studies suggest a novel mechanism of RA signaling, which involves activation of TGase and transamidation of RhoA. RA-induced activation of TGase is proposed to induce multiple signaling pathways that regulate neuronal differentiation.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M206361200