Inference of Euler Angles for Single Particle Analysis by Using Genetic Algorithms
Single particle analysis is one of the methods for structural studies of protein and macromolecules developed in image analysis on electron microscopy. Reconstructing 3D structure from microscope images is not an easy analysis because of the low resolution of images and lack of the directional infor...
Gespeichert in:
Veröffentlicht in: | Genome Informatics 2002, Vol.13, pp.133-142 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 142 |
---|---|
container_issue | |
container_start_page | 133 |
container_title | Genome Informatics |
container_volume | 13 |
creator | Saeki, Shusuke Asai, Kiyoshi Takahashi, Katsutoshi Ueno, Yutaka Isono, Katsunori Iba, Hitoshi |
description | Single particle analysis is one of the methods for structural studies of protein and macromolecules developed in image analysis on electron microscopy. Reconstructing 3D structure from microscope images is not an easy analysis because of the low resolution of images and lack of the directional information of images in 3D structure. To improve the resolution, different projections are aligned, classified and averaged. Inferring the orientations of these images is so difficult that the task of reconstructing 3D structures depends upon the experience of researchers. But recently, a method to reconstruct 3D structures is automatically devised. In this paper, we propose a new method for determining Euler angles of projections by applying Genetic Algorithms (i. e., GAs).We empirically show that the proposed approach has improved the previous one in terms of computational time and acquired precision. |
doi_str_mv | 10.11234/gi1990.13.133 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_72913962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72913962</sourcerecordid><originalsourceid>FETCH-LOGICAL-j304t-cc07f0b87d1cf6a30a2c9c2149e983ccbb1758f27dcd7d2eece7c2f9c036bf953</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRbK1ePcqevEX3I-lmj7HUWigoasHbstnMpin5qLvJof99V1oLw8wb3o-BNwjdU_JEKePxc1lRKcPCQ_ELNGY0TaI0Zj-XaEwklZGMk3iEbrzfEsKnMhHXaETjRFCesjH6XLYWHLQGcGfxfKjB4awta_DYdg5_VX8af2jXVyaIrNX13lce53u89sHEC2gheDiry85V_abxt-jK6trD3WlO0Pp1_j17i1bvi-UsW0VbTuI-MoYIS_JUFNTYqeZEMyMNo7EEmXJj8pyKJLVMFKYQBQMwIAyz0oQUuZUJn6DH492d634H8L1qKm-grnUL3eCVYJJyOWUBfDiBQ95AoXauarTbq_8vBODlCGx9r0s4A6fU6vhjRbk6N342zUY7BS0_AMB2dsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72913962</pqid></control><display><type>article</type><title>Inference of Euler Angles for Single Particle Analysis by Using Genetic Algorithms</title><source>J-STAGE Free</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Saeki, Shusuke ; Asai, Kiyoshi ; Takahashi, Katsutoshi ; Ueno, Yutaka ; Isono, Katsunori ; Iba, Hitoshi</creator><creatorcontrib>Saeki, Shusuke ; Asai, Kiyoshi ; Takahashi, Katsutoshi ; Ueno, Yutaka ; Isono, Katsunori ; Iba, Hitoshi</creatorcontrib><description>Single particle analysis is one of the methods for structural studies of protein and macromolecules developed in image analysis on electron microscopy. Reconstructing 3D structure from microscope images is not an easy analysis because of the low resolution of images and lack of the directional information of images in 3D structure. To improve the resolution, different projections are aligned, classified and averaged. Inferring the orientations of these images is so difficult that the task of reconstructing 3D structures depends upon the experience of researchers. But recently, a method to reconstruct 3D structures is automatically devised. In this paper, we propose a new method for determining Euler angles of projections by applying Genetic Algorithms (i. e., GAs).We empirically show that the proposed approach has improved the previous one in terms of computational time and acquired precision.</description><identifier>ISSN: 0919-9454</identifier><identifier>EISSN: 2185-842X</identifier><identifier>DOI: 10.11234/gi1990.13.133</identifier><identifier>PMID: 14571382</identifier><language>eng</language><publisher>Japan: Japanese Society for Bioinformatics</publisher><subject>Algorithms ; Computational Biology - methods ; Data Interpretation, Statistical ; microscope image ; Protein Structure, Tertiary ; real genetic algorithm ; single particle analysis</subject><ispartof>Genome Informatics, 2002, Vol.13, pp.133-142</ispartof><rights>Japanese Society for Bioinformatics</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1876,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14571382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saeki, Shusuke</creatorcontrib><creatorcontrib>Asai, Kiyoshi</creatorcontrib><creatorcontrib>Takahashi, Katsutoshi</creatorcontrib><creatorcontrib>Ueno, Yutaka</creatorcontrib><creatorcontrib>Isono, Katsunori</creatorcontrib><creatorcontrib>Iba, Hitoshi</creatorcontrib><title>Inference of Euler Angles for Single Particle Analysis by Using Genetic Algorithms</title><title>Genome Informatics</title><addtitle>GI</addtitle><description>Single particle analysis is one of the methods for structural studies of protein and macromolecules developed in image analysis on electron microscopy. Reconstructing 3D structure from microscope images is not an easy analysis because of the low resolution of images and lack of the directional information of images in 3D structure. To improve the resolution, different projections are aligned, classified and averaged. Inferring the orientations of these images is so difficult that the task of reconstructing 3D structures depends upon the experience of researchers. But recently, a method to reconstruct 3D structures is automatically devised. In this paper, we propose a new method for determining Euler angles of projections by applying Genetic Algorithms (i. e., GAs).We empirically show that the proposed approach has improved the previous one in terms of computational time and acquired precision.</description><subject>Algorithms</subject><subject>Computational Biology - methods</subject><subject>Data Interpretation, Statistical</subject><subject>microscope image</subject><subject>Protein Structure, Tertiary</subject><subject>real genetic algorithm</subject><subject>single particle analysis</subject><issn>0919-9454</issn><issn>2185-842X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kM1Lw0AQxRdRbK1ePcqevEX3I-lmj7HUWigoasHbstnMpin5qLvJof99V1oLw8wb3o-BNwjdU_JEKePxc1lRKcPCQ_ELNGY0TaI0Zj-XaEwklZGMk3iEbrzfEsKnMhHXaETjRFCesjH6XLYWHLQGcGfxfKjB4awta_DYdg5_VX8af2jXVyaIrNX13lce53u89sHEC2gheDiry85V_abxt-jK6trD3WlO0Pp1_j17i1bvi-UsW0VbTuI-MoYIS_JUFNTYqeZEMyMNo7EEmXJj8pyKJLVMFKYQBQMwIAyz0oQUuZUJn6DH492d634H8L1qKm-grnUL3eCVYJJyOWUBfDiBQ95AoXauarTbq_8vBODlCGx9r0s4A6fU6vhjRbk6N342zUY7BS0_AMB2dsQ</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Saeki, Shusuke</creator><creator>Asai, Kiyoshi</creator><creator>Takahashi, Katsutoshi</creator><creator>Ueno, Yutaka</creator><creator>Isono, Katsunori</creator><creator>Iba, Hitoshi</creator><general>Japanese Society for Bioinformatics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>2002</creationdate><title>Inference of Euler Angles for Single Particle Analysis by Using Genetic Algorithms</title><author>Saeki, Shusuke ; Asai, Kiyoshi ; Takahashi, Katsutoshi ; Ueno, Yutaka ; Isono, Katsunori ; Iba, Hitoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j304t-cc07f0b87d1cf6a30a2c9c2149e983ccbb1758f27dcd7d2eece7c2f9c036bf953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Computational Biology - methods</topic><topic>Data Interpretation, Statistical</topic><topic>microscope image</topic><topic>Protein Structure, Tertiary</topic><topic>real genetic algorithm</topic><topic>single particle analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Saeki, Shusuke</creatorcontrib><creatorcontrib>Asai, Kiyoshi</creatorcontrib><creatorcontrib>Takahashi, Katsutoshi</creatorcontrib><creatorcontrib>Ueno, Yutaka</creatorcontrib><creatorcontrib>Isono, Katsunori</creatorcontrib><creatorcontrib>Iba, Hitoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Genome Informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saeki, Shusuke</au><au>Asai, Kiyoshi</au><au>Takahashi, Katsutoshi</au><au>Ueno, Yutaka</au><au>Isono, Katsunori</au><au>Iba, Hitoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference of Euler Angles for Single Particle Analysis by Using Genetic Algorithms</atitle><jtitle>Genome Informatics</jtitle><addtitle>GI</addtitle><date>2002</date><risdate>2002</risdate><volume>13</volume><spage>133</spage><epage>142</epage><pages>133-142</pages><issn>0919-9454</issn><eissn>2185-842X</eissn><abstract>Single particle analysis is one of the methods for structural studies of protein and macromolecules developed in image analysis on electron microscopy. Reconstructing 3D structure from microscope images is not an easy analysis because of the low resolution of images and lack of the directional information of images in 3D structure. To improve the resolution, different projections are aligned, classified and averaged. Inferring the orientations of these images is so difficult that the task of reconstructing 3D structures depends upon the experience of researchers. But recently, a method to reconstruct 3D structures is automatically devised. In this paper, we propose a new method for determining Euler angles of projections by applying Genetic Algorithms (i. e., GAs).We empirically show that the proposed approach has improved the previous one in terms of computational time and acquired precision.</abstract><cop>Japan</cop><pub>Japanese Society for Bioinformatics</pub><pmid>14571382</pmid><doi>10.11234/gi1990.13.133</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0919-9454 |
ispartof | Genome Informatics, 2002, Vol.13, pp.133-142 |
issn | 0919-9454 2185-842X |
language | eng |
recordid | cdi_proquest_miscellaneous_72913962 |
source | J-STAGE Free; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Computational Biology - methods Data Interpretation, Statistical microscope image Protein Structure, Tertiary real genetic algorithm single particle analysis |
title | Inference of Euler Angles for Single Particle Analysis by Using Genetic Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A03%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20of%20Euler%20Angles%20for%20Single%20Particle%20Analysis%20by%20Using%20Genetic%20Algorithms&rft.jtitle=Genome%20Informatics&rft.au=Saeki,%20Shusuke&rft.date=2002&rft.volume=13&rft.spage=133&rft.epage=142&rft.pages=133-142&rft.issn=0919-9454&rft.eissn=2185-842X&rft_id=info:doi/10.11234/gi1990.13.133&rft_dat=%3Cproquest_pubme%3E72913962%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72913962&rft_id=info:pmid/14571382&rfr_iscdi=true |