Granulysin Crystal Structure and a Structure-derived Lytic Mechanism
Our crystal structure of granulysin suggests a mechanism for lysis of bacterial membranes by granulysin, a 74-residue basic protein from human cytolytic T lymphocyte and natural killer cells. We determined the initial crystal structure of selenomethionyl granulysin by MAD phasing at 2 Å resolution....
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 2003-01, Vol.325 (2), p.355-365 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 365 |
---|---|
container_issue | 2 |
container_start_page | 355 |
container_title | Journal of molecular biology |
container_volume | 325 |
creator | Anderson, Daniel H. Sawaya, Michael R. Cascio, Duilio Ernst, William Modlin, Robert Krensky, Alan Eisenberg, David |
description | Our crystal structure of granulysin suggests a mechanism for lysis of bacterial membranes by granulysin, a 74-residue basic protein from human cytolytic T lymphocyte and natural killer cells. We determined the initial crystal structure of selenomethionyl granulysin by MAD phasing at 2
Å resolution. We present the structure model refined using native diffraction data to 0.96
Å resolution. The five-helical bundle of granulysin resembles other “saposin folds” (such as NK-lysin). Positive charges distribute in a ring around the granulysin molecule, and one face has net positive charge. Sulfate ions bind near the segment of the molecule identified as most membrane-lytic and of highest hydrophobic moment. The ion locations may indicate granulysin's orientation of initial approach towards the membrane. The crystal packing reveals one way to pack a sheet of granulysin molecules at the cell surface for a concerted lysis effort. The energy of binding granulysin charges to the bacterial membrane could drive the subsequent lytic processes. The loosely packed core facilitates a hinge or scissors motion towards exposure of hydrophobic surface that we propose tunnels the granulysin into the fracturing target membrane. |
doi_str_mv | 10.1016/S0022-2836(02)01234-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72891500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283602012342</els_id><sourcerecordid>18634449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-34ee9a265b2b308b44abf5864b4e6fce8f0237b7517324354006b2e04784ba5a3</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhQdRbK3-BCUr0UX0ziuZrkSqVqHioroeZiY3OJKmdSYp9N-bPrDLri4XvnMOfIRcUrijQLP7KQBjKVM8uwF2C5RxkbIj0qeghqnKuDom_X-kR85i_AEAyYU6JT3KhFIUoE-exsHUbbWKvk5GYRUbUyXTJrSuaQMmpi4Ss__TAoNfYpFMVo13yTu6b1P7ODsnJ6WpIl7s7oB8vTx_jl7Tycf4bfQ4SZ2Qqkm5QBwalknLLAdlhTC2lCoTVmBWOlQlMJ7bXNKcM8GlAMgsQxC5EtZIwwfketu7CPPfFmOjZz46rCpT47yNOmdqSCXAQZB2goQQww6UW9CFeYwBS70IfmbCSlPQa89641mvJWpgeuNZsy53tRto7QyLfWontgMetgB2PpYeg47OY-2w8AFdo4u5PzDxBwiui5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18634449</pqid></control><display><type>article</type><title>Granulysin Crystal Structure and a Structure-derived Lytic Mechanism</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Anderson, Daniel H. ; Sawaya, Michael R. ; Cascio, Duilio ; Ernst, William ; Modlin, Robert ; Krensky, Alan ; Eisenberg, David</creator><creatorcontrib>Anderson, Daniel H. ; Sawaya, Michael R. ; Cascio, Duilio ; Ernst, William ; Modlin, Robert ; Krensky, Alan ; Eisenberg, David</creatorcontrib><description>Our crystal structure of granulysin suggests a mechanism for lysis of bacterial membranes by granulysin, a 74-residue basic protein from human cytolytic T lymphocyte and natural killer cells. We determined the initial crystal structure of selenomethionyl granulysin by MAD phasing at 2
Å resolution. We present the structure model refined using native diffraction data to 0.96
Å resolution. The five-helical bundle of granulysin resembles other “saposin folds” (such as NK-lysin). Positive charges distribute in a ring around the granulysin molecule, and one face has net positive charge. Sulfate ions bind near the segment of the molecule identified as most membrane-lytic and of highest hydrophobic moment. The ion locations may indicate granulysin's orientation of initial approach towards the membrane. The crystal packing reveals one way to pack a sheet of granulysin molecules at the cell surface for a concerted lysis effort. The energy of binding granulysin charges to the bacterial membrane could drive the subsequent lytic processes. The loosely packed core facilitates a hinge or scissors motion towards exposure of hydrophobic surface that we propose tunnels the granulysin into the fracturing target membrane.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/S0022-2836(02)01234-2</identifier><identifier>PMID: 12488100</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Anti-Infective Agents - chemistry ; Antigens, Differentiation, T-Lymphocyte - chemistry ; antimicrobial protein ; Binding Sites ; crystal structure ; Crystallography, X-Ray ; granulysin ; Humans ; Hydrogen Bonding ; Killer Cells, Natural - metabolism ; lytic mechanism ; Models, Molecular ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; saposin fold ; Solvents - chemistry ; Sulfates - chemistry ; T-Lymphocytes, Cytotoxic - metabolism</subject><ispartof>Journal of molecular biology, 2003-01, Vol.325 (2), p.355-365</ispartof><rights>2002 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-34ee9a265b2b308b44abf5864b4e6fce8f0237b7517324354006b2e04784ba5a3</citedby><cites>FETCH-LOGICAL-c458t-34ee9a265b2b308b44abf5864b4e6fce8f0237b7517324354006b2e04784ba5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0022-2836(02)01234-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12488100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Daniel H.</creatorcontrib><creatorcontrib>Sawaya, Michael R.</creatorcontrib><creatorcontrib>Cascio, Duilio</creatorcontrib><creatorcontrib>Ernst, William</creatorcontrib><creatorcontrib>Modlin, Robert</creatorcontrib><creatorcontrib>Krensky, Alan</creatorcontrib><creatorcontrib>Eisenberg, David</creatorcontrib><title>Granulysin Crystal Structure and a Structure-derived Lytic Mechanism</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Our crystal structure of granulysin suggests a mechanism for lysis of bacterial membranes by granulysin, a 74-residue basic protein from human cytolytic T lymphocyte and natural killer cells. We determined the initial crystal structure of selenomethionyl granulysin by MAD phasing at 2
Å resolution. We present the structure model refined using native diffraction data to 0.96
Å resolution. The five-helical bundle of granulysin resembles other “saposin folds” (such as NK-lysin). Positive charges distribute in a ring around the granulysin molecule, and one face has net positive charge. Sulfate ions bind near the segment of the molecule identified as most membrane-lytic and of highest hydrophobic moment. The ion locations may indicate granulysin's orientation of initial approach towards the membrane. The crystal packing reveals one way to pack a sheet of granulysin molecules at the cell surface for a concerted lysis effort. The energy of binding granulysin charges to the bacterial membrane could drive the subsequent lytic processes. The loosely packed core facilitates a hinge or scissors motion towards exposure of hydrophobic surface that we propose tunnels the granulysin into the fracturing target membrane.</description><subject>Anti-Infective Agents - chemistry</subject><subject>Antigens, Differentiation, T-Lymphocyte - chemistry</subject><subject>antimicrobial protein</subject><subject>Binding Sites</subject><subject>crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>granulysin</subject><subject>Humans</subject><subject>Hydrogen Bonding</subject><subject>Killer Cells, Natural - metabolism</subject><subject>lytic mechanism</subject><subject>Models, Molecular</subject><subject>Protein Binding</subject><subject>Protein Folding</subject><subject>Protein Structure, Tertiary</subject><subject>saposin fold</subject><subject>Solvents - chemistry</subject><subject>Sulfates - chemistry</subject><subject>T-Lymphocytes, Cytotoxic - metabolism</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLw0AUhQdRbK3-BCUr0UX0ziuZrkSqVqHioroeZiY3OJKmdSYp9N-bPrDLri4XvnMOfIRcUrijQLP7KQBjKVM8uwF2C5RxkbIj0qeghqnKuDom_X-kR85i_AEAyYU6JT3KhFIUoE-exsHUbbWKvk5GYRUbUyXTJrSuaQMmpi4Ss__TAoNfYpFMVo13yTu6b1P7ODsnJ6WpIl7s7oB8vTx_jl7Tycf4bfQ4SZ2Qqkm5QBwalknLLAdlhTC2lCoTVmBWOlQlMJ7bXNKcM8GlAMgsQxC5EtZIwwfketu7CPPfFmOjZz46rCpT47yNOmdqSCXAQZB2goQQww6UW9CFeYwBS70IfmbCSlPQa89641mvJWpgeuNZsy53tRto7QyLfWontgMetgB2PpYeg47OY-2w8AFdo4u5PzDxBwiui5Q</recordid><startdate>20030110</startdate><enddate>20030110</enddate><creator>Anderson, Daniel H.</creator><creator>Sawaya, Michael R.</creator><creator>Cascio, Duilio</creator><creator>Ernst, William</creator><creator>Modlin, Robert</creator><creator>Krensky, Alan</creator><creator>Eisenberg, David</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20030110</creationdate><title>Granulysin Crystal Structure and a Structure-derived Lytic Mechanism</title><author>Anderson, Daniel H. ; Sawaya, Michael R. ; Cascio, Duilio ; Ernst, William ; Modlin, Robert ; Krensky, Alan ; Eisenberg, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-34ee9a265b2b308b44abf5864b4e6fce8f0237b7517324354006b2e04784ba5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Anti-Infective Agents - chemistry</topic><topic>Antigens, Differentiation, T-Lymphocyte - chemistry</topic><topic>antimicrobial protein</topic><topic>Binding Sites</topic><topic>crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>granulysin</topic><topic>Humans</topic><topic>Hydrogen Bonding</topic><topic>Killer Cells, Natural - metabolism</topic><topic>lytic mechanism</topic><topic>Models, Molecular</topic><topic>Protein Binding</topic><topic>Protein Folding</topic><topic>Protein Structure, Tertiary</topic><topic>saposin fold</topic><topic>Solvents - chemistry</topic><topic>Sulfates - chemistry</topic><topic>T-Lymphocytes, Cytotoxic - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Daniel H.</creatorcontrib><creatorcontrib>Sawaya, Michael R.</creatorcontrib><creatorcontrib>Cascio, Duilio</creatorcontrib><creatorcontrib>Ernst, William</creatorcontrib><creatorcontrib>Modlin, Robert</creatorcontrib><creatorcontrib>Krensky, Alan</creatorcontrib><creatorcontrib>Eisenberg, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Daniel H.</au><au>Sawaya, Michael R.</au><au>Cascio, Duilio</au><au>Ernst, William</au><au>Modlin, Robert</au><au>Krensky, Alan</au><au>Eisenberg, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Granulysin Crystal Structure and a Structure-derived Lytic Mechanism</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2003-01-10</date><risdate>2003</risdate><volume>325</volume><issue>2</issue><spage>355</spage><epage>365</epage><pages>355-365</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Our crystal structure of granulysin suggests a mechanism for lysis of bacterial membranes by granulysin, a 74-residue basic protein from human cytolytic T lymphocyte and natural killer cells. We determined the initial crystal structure of selenomethionyl granulysin by MAD phasing at 2
Å resolution. We present the structure model refined using native diffraction data to 0.96
Å resolution. The five-helical bundle of granulysin resembles other “saposin folds” (such as NK-lysin). Positive charges distribute in a ring around the granulysin molecule, and one face has net positive charge. Sulfate ions bind near the segment of the molecule identified as most membrane-lytic and of highest hydrophobic moment. The ion locations may indicate granulysin's orientation of initial approach towards the membrane. The crystal packing reveals one way to pack a sheet of granulysin molecules at the cell surface for a concerted lysis effort. The energy of binding granulysin charges to the bacterial membrane could drive the subsequent lytic processes. The loosely packed core facilitates a hinge or scissors motion towards exposure of hydrophobic surface that we propose tunnels the granulysin into the fracturing target membrane.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>12488100</pmid><doi>10.1016/S0022-2836(02)01234-2</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 2003-01, Vol.325 (2), p.355-365 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_proquest_miscellaneous_72891500 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Anti-Infective Agents - chemistry Antigens, Differentiation, T-Lymphocyte - chemistry antimicrobial protein Binding Sites crystal structure Crystallography, X-Ray granulysin Humans Hydrogen Bonding Killer Cells, Natural - metabolism lytic mechanism Models, Molecular Protein Binding Protein Folding Protein Structure, Tertiary saposin fold Solvents - chemistry Sulfates - chemistry T-Lymphocytes, Cytotoxic - metabolism |
title | Granulysin Crystal Structure and a Structure-derived Lytic Mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T16%3A18%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Granulysin%20Crystal%20Structure%20and%20a%20Structure-derived%20Lytic%20Mechanism&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Anderson,%20Daniel%20H.&rft.date=2003-01-10&rft.volume=325&rft.issue=2&rft.spage=355&rft.epage=365&rft.pages=355-365&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/S0022-2836(02)01234-2&rft_dat=%3Cproquest_cross%3E18634449%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18634449&rft_id=info:pmid/12488100&rft_els_id=S0022283602012342&rfr_iscdi=true |