Preparation of a colored conductive paint electrode for electrochemical inactivation of bacteria
In this study we describe the preparation of a colored conductive paint electrode containing In2O3, SnO2, or TiO2 for the electrochemical inactivation of marine bacteria. When each colored conductive paint electrode was immersed in seawater containing 106 cells/mL for 90 min, marine microbe attachme...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2003-02, Vol.81 (3), p.299-304 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 304 |
---|---|
container_issue | 3 |
container_start_page | 299 |
container_title | Biotechnology and bioengineering |
container_volume | 81 |
creator | Lim, Tae-Kyu Murakami, Tadataka Tsuboi, Makoto Yamashita, Kazuharu Matsunaga, Tadashi |
description | In this study we describe the preparation of a colored conductive paint electrode containing In2O3, SnO2, or TiO2 for the electrochemical inactivation of marine bacteria. When each colored conductive paint electrode was immersed in seawater containing 106 cells/mL for 90 min, marine microbe attachment to the TiO2/SnO2/Sb electrode surface was minimal. Preparation of electrodes coated with 40% particles is shown to be more cost‐effective, and because of their more translucent coatings they can be painted over with bright colors. When a potential of 1.0 V was applied for 30 min to the colored conductive paint electrode (40 wt% TiO2/SnO2/Sb) in sterile seawater, the survival ratio decreased to 55%. When 1.5 V vs. saturated calomel electrode (SCE) was applied, all attached cells were inactivated. Chlorine was not detected below an applied potential of 1.5 V. A change in pH was not observed in the range of 0 to 1.5 V. This method might be effective for preventing bacterial cell accumulation and the formation of biofilms. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 299–304, 2003. |
doi_str_mv | 10.1002/bit.10469 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72882429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18701572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4209-c63ddb41557f2dfafa091b98cf3203ec6fc6fca1e49fa7a062cb4164d3b451003</originalsourceid><addsrcrecordid>eNqFkF1PFDEUhhuikRW98A-QuZHEi5F-TTu9FBQkISoE4bKe6ZyGwux0aWdV_r1dd4ErY9Lk9E2e857kIeQNo-8ZpXy_C1P5SGW2yIxRo2vKDX1GZpRSVYvG8G3yMuebEnWr1AuyzbjUkjd8Rn58S7iABFOIYxV9BZWLQ0zYlzn2SzeFn1gtIIxThQO6KcUeKx_TQ3LXOA8OhiqMsIIfi7oSMQV4RZ57GDK-3swd8v3o08Xh5_r06_HJ4YfT2klOTe2U6PtOsqbRnvcePFDDOtM6LzgV6JRfPWAojQcNVHFXaCV70cmmSBA7ZG_du0jxbol5svOQHQ4DjBiX2Wretlxy81-QtZqyRvMCvluDLsWcE3q7SGEO6d4yalfebfFu_3ov7O6mdNnNsX8iN6IL8HYDQC66fILRhfzESakE1apw-2vuVxjw_t8X7cHJxcPper0R8oS_Hzcg3VqlhW7s1Zdje_Xx6PL8jJ_Zc_EHG0eqDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18701572</pqid></control><display><type>article</type><title>Preparation of a colored conductive paint electrode for electrochemical inactivation of bacteria</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Lim, Tae-Kyu ; Murakami, Tadataka ; Tsuboi, Makoto ; Yamashita, Kazuharu ; Matsunaga, Tadashi</creator><creatorcontrib>Lim, Tae-Kyu ; Murakami, Tadataka ; Tsuboi, Makoto ; Yamashita, Kazuharu ; Matsunaga, Tadashi</creatorcontrib><description>In this study we describe the preparation of a colored conductive paint electrode containing In2O3, SnO2, or TiO2 for the electrochemical inactivation of marine bacteria. When each colored conductive paint electrode was immersed in seawater containing 106 cells/mL for 90 min, marine microbe attachment to the TiO2/SnO2/Sb electrode surface was minimal. Preparation of electrodes coated with 40% particles is shown to be more cost‐effective, and because of their more translucent coatings they can be painted over with bright colors. When a potential of 1.0 V was applied for 30 min to the colored conductive paint electrode (40 wt% TiO2/SnO2/Sb) in sterile seawater, the survival ratio decreased to 55%. When 1.5 V vs. saturated calomel electrode (SCE) was applied, all attached cells were inactivated. Chlorine was not detected below an applied potential of 1.5 V. A change in pH was not observed in the range of 0 to 1.5 V. This method might be effective for preventing bacterial cell accumulation and the formation of biofilms. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 299–304, 2003.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.10469</identifier><identifier>PMID: 12474252</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>bacteria ; Bacterial Adhesion - drug effects ; Bacterial Adhesion - radiation effects ; Biodeterioration. Biofouling ; Biofilms - drug effects ; Biofilms - growth & development ; Biofilms - radiation effects ; Biological and medical sciences ; Biotechnology ; Cell Survival - drug effects ; Cell Survival - radiation effects ; Coated Materials, Biocompatible ; colored conductive paint electrode ; Electric Conductivity ; electrochemical inactivation ; Electrochemistry - instrumentation ; Electrochemistry - methods ; Electrodes ; Electromagnetic Fields ; Equipment Design ; Fundamental and applied biological sciences. Psychology ; Industrial applications and implications. Economical aspects ; metal particles ; Paint - microbiology ; Seawater - microbiology ; Sterilization - methods ; Vibrio - drug effects ; Vibrio - physiology ; Water Microbiology</subject><ispartof>Biotechnology and bioengineering, 2003-02, Vol.81 (3), p.299-304</ispartof><rights>Copyright © 2003 Wiley Periodicals, Inc.</rights><rights>2003 INIST-CNRS</rights><rights>Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 299-304, 2003.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4209-c63ddb41557f2dfafa091b98cf3203ec6fc6fca1e49fa7a062cb4164d3b451003</citedby><cites>FETCH-LOGICAL-c4209-c63ddb41557f2dfafa091b98cf3203ec6fc6fca1e49fa7a062cb4164d3b451003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.10469$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.10469$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14463076$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12474252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lim, Tae-Kyu</creatorcontrib><creatorcontrib>Murakami, Tadataka</creatorcontrib><creatorcontrib>Tsuboi, Makoto</creatorcontrib><creatorcontrib>Yamashita, Kazuharu</creatorcontrib><creatorcontrib>Matsunaga, Tadashi</creatorcontrib><title>Preparation of a colored conductive paint electrode for electrochemical inactivation of bacteria</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>In this study we describe the preparation of a colored conductive paint electrode containing In2O3, SnO2, or TiO2 for the electrochemical inactivation of marine bacteria. When each colored conductive paint electrode was immersed in seawater containing 106 cells/mL for 90 min, marine microbe attachment to the TiO2/SnO2/Sb electrode surface was minimal. Preparation of electrodes coated with 40% particles is shown to be more cost‐effective, and because of their more translucent coatings they can be painted over with bright colors. When a potential of 1.0 V was applied for 30 min to the colored conductive paint electrode (40 wt% TiO2/SnO2/Sb) in sterile seawater, the survival ratio decreased to 55%. When 1.5 V vs. saturated calomel electrode (SCE) was applied, all attached cells were inactivated. Chlorine was not detected below an applied potential of 1.5 V. A change in pH was not observed in the range of 0 to 1.5 V. This method might be effective for preventing bacterial cell accumulation and the formation of biofilms. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 299–304, 2003.</description><subject>bacteria</subject><subject>Bacterial Adhesion - drug effects</subject><subject>Bacterial Adhesion - radiation effects</subject><subject>Biodeterioration. Biofouling</subject><subject>Biofilms - drug effects</subject><subject>Biofilms - growth & development</subject><subject>Biofilms - radiation effects</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cell Survival - drug effects</subject><subject>Cell Survival - radiation effects</subject><subject>Coated Materials, Biocompatible</subject><subject>colored conductive paint electrode</subject><subject>Electric Conductivity</subject><subject>electrochemical inactivation</subject><subject>Electrochemistry - instrumentation</subject><subject>Electrochemistry - methods</subject><subject>Electrodes</subject><subject>Electromagnetic Fields</subject><subject>Equipment Design</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>metal particles</subject><subject>Paint - microbiology</subject><subject>Seawater - microbiology</subject><subject>Sterilization - methods</subject><subject>Vibrio - drug effects</subject><subject>Vibrio - physiology</subject><subject>Water Microbiology</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkF1PFDEUhhuikRW98A-QuZHEi5F-TTu9FBQkISoE4bKe6ZyGwux0aWdV_r1dd4ErY9Lk9E2e857kIeQNo-8ZpXy_C1P5SGW2yIxRo2vKDX1GZpRSVYvG8G3yMuebEnWr1AuyzbjUkjd8Rn58S7iABFOIYxV9BZWLQ0zYlzn2SzeFn1gtIIxThQO6KcUeKx_TQ3LXOA8OhiqMsIIfi7oSMQV4RZ57GDK-3swd8v3o08Xh5_r06_HJ4YfT2klOTe2U6PtOsqbRnvcePFDDOtM6LzgV6JRfPWAojQcNVHFXaCV70cmmSBA7ZG_du0jxbol5svOQHQ4DjBiX2Wretlxy81-QtZqyRvMCvluDLsWcE3q7SGEO6d4yalfebfFu_3ov7O6mdNnNsX8iN6IL8HYDQC66fILRhfzESakE1apw-2vuVxjw_t8X7cHJxcPper0R8oS_Hzcg3VqlhW7s1Zdje_Xx6PL8jJ_Zc_EHG0eqDQ</recordid><startdate>20030205</startdate><enddate>20030205</enddate><creator>Lim, Tae-Kyu</creator><creator>Murakami, Tadataka</creator><creator>Tsuboi, Makoto</creator><creator>Yamashita, Kazuharu</creator><creator>Matsunaga, Tadashi</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20030205</creationdate><title>Preparation of a colored conductive paint electrode for electrochemical inactivation of bacteria</title><author>Lim, Tae-Kyu ; Murakami, Tadataka ; Tsuboi, Makoto ; Yamashita, Kazuharu ; Matsunaga, Tadashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4209-c63ddb41557f2dfafa091b98cf3203ec6fc6fca1e49fa7a062cb4164d3b451003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>bacteria</topic><topic>Bacterial Adhesion - drug effects</topic><topic>Bacterial Adhesion - radiation effects</topic><topic>Biodeterioration. Biofouling</topic><topic>Biofilms - drug effects</topic><topic>Biofilms - growth & development</topic><topic>Biofilms - radiation effects</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cell Survival - drug effects</topic><topic>Cell Survival - radiation effects</topic><topic>Coated Materials, Biocompatible</topic><topic>colored conductive paint electrode</topic><topic>Electric Conductivity</topic><topic>electrochemical inactivation</topic><topic>Electrochemistry - instrumentation</topic><topic>Electrochemistry - methods</topic><topic>Electrodes</topic><topic>Electromagnetic Fields</topic><topic>Equipment Design</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>metal particles</topic><topic>Paint - microbiology</topic><topic>Seawater - microbiology</topic><topic>Sterilization - methods</topic><topic>Vibrio - drug effects</topic><topic>Vibrio - physiology</topic><topic>Water Microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Tae-Kyu</creatorcontrib><creatorcontrib>Murakami, Tadataka</creatorcontrib><creatorcontrib>Tsuboi, Makoto</creatorcontrib><creatorcontrib>Yamashita, Kazuharu</creatorcontrib><creatorcontrib>Matsunaga, Tadashi</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Tae-Kyu</au><au>Murakami, Tadataka</au><au>Tsuboi, Makoto</au><au>Yamashita, Kazuharu</au><au>Matsunaga, Tadashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of a colored conductive paint electrode for electrochemical inactivation of bacteria</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2003-02-05</date><risdate>2003</risdate><volume>81</volume><issue>3</issue><spage>299</spage><epage>304</epage><pages>299-304</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>In this study we describe the preparation of a colored conductive paint electrode containing In2O3, SnO2, or TiO2 for the electrochemical inactivation of marine bacteria. When each colored conductive paint electrode was immersed in seawater containing 106 cells/mL for 90 min, marine microbe attachment to the TiO2/SnO2/Sb electrode surface was minimal. Preparation of electrodes coated with 40% particles is shown to be more cost‐effective, and because of their more translucent coatings they can be painted over with bright colors. When a potential of 1.0 V was applied for 30 min to the colored conductive paint electrode (40 wt% TiO2/SnO2/Sb) in sterile seawater, the survival ratio decreased to 55%. When 1.5 V vs. saturated calomel electrode (SCE) was applied, all attached cells were inactivated. Chlorine was not detected below an applied potential of 1.5 V. A change in pH was not observed in the range of 0 to 1.5 V. This method might be effective for preventing bacterial cell accumulation and the formation of biofilms. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 299–304, 2003.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>12474252</pmid><doi>10.1002/bit.10469</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2003-02, Vol.81 (3), p.299-304 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_72882429 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | bacteria Bacterial Adhesion - drug effects Bacterial Adhesion - radiation effects Biodeterioration. Biofouling Biofilms - drug effects Biofilms - growth & development Biofilms - radiation effects Biological and medical sciences Biotechnology Cell Survival - drug effects Cell Survival - radiation effects Coated Materials, Biocompatible colored conductive paint electrode Electric Conductivity electrochemical inactivation Electrochemistry - instrumentation Electrochemistry - methods Electrodes Electromagnetic Fields Equipment Design Fundamental and applied biological sciences. Psychology Industrial applications and implications. Economical aspects metal particles Paint - microbiology Seawater - microbiology Sterilization - methods Vibrio - drug effects Vibrio - physiology Water Microbiology |
title | Preparation of a colored conductive paint electrode for electrochemical inactivation of bacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A45%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20a%20colored%20conductive%20paint%20electrode%20for%20electrochemical%20inactivation%20of%20bacteria&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Lim,%20Tae-Kyu&rft.date=2003-02-05&rft.volume=81&rft.issue=3&rft.spage=299&rft.epage=304&rft.pages=299-304&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.10469&rft_dat=%3Cproquest_cross%3E18701572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18701572&rft_id=info:pmid/12474252&rfr_iscdi=true |