Endogenous CD4+BV8S2− T cells from TG BV8S2+ donors confer complete protection against spontaneous experimental encephalomyelitis (Sp-EAE) in TCR transgenic, RAG−/− mice

To investigate regulatory mechanisms which naturally prevent autoimmune diseases, we adopted the genetically restricted immunodeficient (RAG‐1−/−) myelin basic protein (MBP)‐specific T cell receptor (TCR) double transgenic (T/R−) mouse model of spontaneous experimental autoimmune encephalomyelitis (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience research 2003-01, Vol.71 (1), p.89-103
Hauptverfasser: Matejuk, Agata, Buenafe, Abigail C., Dwyer, Jami, Ito, Atsushi, Silverman, Marc, Zamora, Alex, Subramanian, Sandhya, Vandenbark, Arthur A., Offner, Halina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103
container_issue 1
container_start_page 89
container_title Journal of neuroscience research
container_volume 71
creator Matejuk, Agata
Buenafe, Abigail C.
Dwyer, Jami
Ito, Atsushi
Silverman, Marc
Zamora, Alex
Subramanian, Sandhya
Vandenbark, Arthur A.
Offner, Halina
description To investigate regulatory mechanisms which naturally prevent autoimmune diseases, we adopted the genetically restricted immunodeficient (RAG‐1−/−) myelin basic protein (MBP)‐specific T cell receptor (TCR) double transgenic (T/R−) mouse model of spontaneous experimental autoimmune encephalomyelitis (Sp‐EAE). Sp‐EAE can be prevented after transfer of CD4+splenocytes from naïve immunocompetent mice. RAG‐1+ double transgenic (T/R+) mice do not develop Sp‐EAE due to the presence of a very small population (about 2%) of non‐Tg TCR specificities. In this study, CD4+BV8S2+ T cells that predominate in T/R+ mice, and three additional populations, CD4+BV8S2−, CD4−CD8−BV8S2+, and CD4−CD8+BV8S2+ T cells that expanded in T/R+ mice after immunization with MBP‐Ac1‐11 peptide, were studied for their ability to prevent Sp‐EAE in T/R− mice. Only the CD4+BV8S2− T cell population conferred complete protection against Sp‐EAE, similar to unfractionated splenocytes from non‐Tg donors, whereas CD4−CD8−BV8S2+ and CD4+BV8S2+ T cells conferred partial protection. In contrast, CD4−CD8+BV8S2+ T cells had no significant protective effects. The highly protective CD4+BV8S2− subpopulation was CD25+, contained non‐clonotypic T cells, and uniquely expressed the CCR4 chemokine receptor. Protected recipient T/R− mice had marked increases in CD4+CD25+ Treg‐like cells, retention of the pathogenic T cell phenotype in the spleen, and markedly reduced inflammation in CNS tissue. Partially protective CD4+BV8S2+ and CD4− CD8−BV8S2+ subpopulations appeared to be mainly clonotypic T cells with altered functional properties. These three Sp‐EAE protective T cell subpopulations possessed distinctive properties and induced a variety of effects in T/R− recipients, thus implicating differing mechanisms of protection. © 2002 Wiley‐Liss, Inc.
doi_str_mv 10.1002/jnr.10450
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72881708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72881708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3590-955e814e53efb05ac898995e2a33f76789c07a40e150f60bb46e163dc847fa8f3</originalsourceid><addsrcrecordid>eNp1kc1uEzEUhS0EoqGw4AWQV4iqDLHHnrFnGUI6UJUi0vCzsxznTnE7Yw_2RDRvwJoX4Z14EpwmwIrVtezvHp3jg9BjSl5QQvLxlQvpwAtyB40oqUTGCy7uohFhJck4ofkBehDjFSGkqgp2Hx3QnAtZUjFCP2du5S_B-XXE01f8-OVHeZH_-v4DL7CBto24Cb7DixrfPhzjlXc-RGy8ayCk0fUtDID74Acwg_UO60ttXRxw7L0btIOtMtz0EGwH6aLF4Az0X3Truw20drARP7vos9lkdoStw4vpHA9Bu5hMWfMczyd1sjPeWuqsgYfoXqPbCI_28xB9OJktpq-zs3f1m-nkLDOsqEhWFQVIyqFg0CxJoY2sZMoOuWasEaWQlSFCcwK0IE1JlkteAi3ZykguGi0bdoie7nRTsq9riIPqbNz-yC6RErmUVBCZwKMdaIKPMUCj-pRUh42iRG3bUakdddtOYp_sRdfLDlb_yH0dCRjvgG-2hc3_ldTp-fyPZLbbsHGAm78bOlyrUjBRqE_ntRL1CXn7-fS9Yuw3romq_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72881708</pqid></control><display><type>article</type><title>Endogenous CD4+BV8S2− T cells from TG BV8S2+ donors confer complete protection against spontaneous experimental encephalomyelitis (Sp-EAE) in TCR transgenic, RAG−/− mice</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Matejuk, Agata ; Buenafe, Abigail C. ; Dwyer, Jami ; Ito, Atsushi ; Silverman, Marc ; Zamora, Alex ; Subramanian, Sandhya ; Vandenbark, Arthur A. ; Offner, Halina</creator><creatorcontrib>Matejuk, Agata ; Buenafe, Abigail C. ; Dwyer, Jami ; Ito, Atsushi ; Silverman, Marc ; Zamora, Alex ; Subramanian, Sandhya ; Vandenbark, Arthur A. ; Offner, Halina</creatorcontrib><description>To investigate regulatory mechanisms which naturally prevent autoimmune diseases, we adopted the genetically restricted immunodeficient (RAG‐1−/−) myelin basic protein (MBP)‐specific T cell receptor (TCR) double transgenic (T/R−) mouse model of spontaneous experimental autoimmune encephalomyelitis (Sp‐EAE). Sp‐EAE can be prevented after transfer of CD4+splenocytes from naïve immunocompetent mice. RAG‐1+ double transgenic (T/R+) mice do not develop Sp‐EAE due to the presence of a very small population (about 2%) of non‐Tg TCR specificities. In this study, CD4+BV8S2+ T cells that predominate in T/R+ mice, and three additional populations, CD4+BV8S2−, CD4−CD8−BV8S2+, and CD4−CD8+BV8S2+ T cells that expanded in T/R+ mice after immunization with MBP‐Ac1‐11 peptide, were studied for their ability to prevent Sp‐EAE in T/R− mice. Only the CD4+BV8S2− T cell population conferred complete protection against Sp‐EAE, similar to unfractionated splenocytes from non‐Tg donors, whereas CD4−CD8−BV8S2+ and CD4+BV8S2+ T cells conferred partial protection. In contrast, CD4−CD8+BV8S2+ T cells had no significant protective effects. The highly protective CD4+BV8S2− subpopulation was CD25+, contained non‐clonotypic T cells, and uniquely expressed the CCR4 chemokine receptor. Protected recipient T/R− mice had marked increases in CD4+CD25+ Treg‐like cells, retention of the pathogenic T cell phenotype in the spleen, and markedly reduced inflammation in CNS tissue. Partially protective CD4+BV8S2+ and CD4− CD8−BV8S2+ subpopulations appeared to be mainly clonotypic T cells with altered functional properties. These three Sp‐EAE protective T cell subpopulations possessed distinctive properties and induced a variety of effects in T/R− recipients, thus implicating differing mechanisms of protection. © 2002 Wiley‐Liss, Inc.</description><identifier>ISSN: 0360-4012</identifier><identifier>EISSN: 1097-4547</identifier><identifier>DOI: 10.1002/jnr.10450</identifier><identifier>PMID: 12478617</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; CD4+ T cells ; CD4-Positive T-Lymphocytes - physiology ; CD4-Positive T-Lymphocytes - transplantation ; CD8-Positive T-Lymphocytes - physiology ; Chemokines - biosynthesis ; DNA Nucleotidyltransferases - deficiency ; DNA Nucleotidyltransferases - genetics ; EAE ; Encephalomyelitis, Autoimmune, Experimental - genetics ; Encephalomyelitis, Autoimmune, Experimental - immunology ; Encephalomyelitis, Autoimmune, Experimental - prevention &amp; control ; Female ; Flow Cytometry - methods ; Homeodomain Proteins - genetics ; Homeodomain Proteins - immunology ; Immunization, Passive ; Lymph Nodes - cytology ; Lymph Nodes - immunology ; Male ; Mice ; Mice, Inbred Strains ; Mice, Transgenic ; Myelin Basic Protein - immunology ; Peptide Fragments - deficiency ; Peptide Fragments - genetics ; Peptide Fragments - immunology ; Phenotype ; Receptors, Antigen, T-Cell - immunology ; Receptors, Antigen, T-Cell, alpha-beta - deficiency ; Receptors, Antigen, T-Cell, alpha-beta - genetics ; Receptors, Antigen, T-Cell, alpha-beta - immunology ; Receptors, Chemokine - genetics ; Receptors, Chemokine - metabolism ; Recombinases ; regulatory T cells ; Spinal Cord - pathology ; Spleen - cytology ; Spleen - immunology ; TCR transgenic mice</subject><ispartof>Journal of neuroscience research, 2003-01, Vol.71 (1), p.89-103</ispartof><rights>Copyright © 2002 Wiley‐Liss, Inc.</rights><rights>Copyright 2002 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3590-955e814e53efb05ac898995e2a33f76789c07a40e150f60bb46e163dc847fa8f3</citedby><cites>FETCH-LOGICAL-c3590-955e814e53efb05ac898995e2a33f76789c07a40e150f60bb46e163dc847fa8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjnr.10450$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjnr.10450$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12478617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matejuk, Agata</creatorcontrib><creatorcontrib>Buenafe, Abigail C.</creatorcontrib><creatorcontrib>Dwyer, Jami</creatorcontrib><creatorcontrib>Ito, Atsushi</creatorcontrib><creatorcontrib>Silverman, Marc</creatorcontrib><creatorcontrib>Zamora, Alex</creatorcontrib><creatorcontrib>Subramanian, Sandhya</creatorcontrib><creatorcontrib>Vandenbark, Arthur A.</creatorcontrib><creatorcontrib>Offner, Halina</creatorcontrib><title>Endogenous CD4+BV8S2− T cells from TG BV8S2+ donors confer complete protection against spontaneous experimental encephalomyelitis (Sp-EAE) in TCR transgenic, RAG−/− mice</title><title>Journal of neuroscience research</title><addtitle>J. Neurosci. Res</addtitle><description>To investigate regulatory mechanisms which naturally prevent autoimmune diseases, we adopted the genetically restricted immunodeficient (RAG‐1−/−) myelin basic protein (MBP)‐specific T cell receptor (TCR) double transgenic (T/R−) mouse model of spontaneous experimental autoimmune encephalomyelitis (Sp‐EAE). Sp‐EAE can be prevented after transfer of CD4+splenocytes from naïve immunocompetent mice. RAG‐1+ double transgenic (T/R+) mice do not develop Sp‐EAE due to the presence of a very small population (about 2%) of non‐Tg TCR specificities. In this study, CD4+BV8S2+ T cells that predominate in T/R+ mice, and three additional populations, CD4+BV8S2−, CD4−CD8−BV8S2+, and CD4−CD8+BV8S2+ T cells that expanded in T/R+ mice after immunization with MBP‐Ac1‐11 peptide, were studied for their ability to prevent Sp‐EAE in T/R− mice. Only the CD4+BV8S2− T cell population conferred complete protection against Sp‐EAE, similar to unfractionated splenocytes from non‐Tg donors, whereas CD4−CD8−BV8S2+ and CD4+BV8S2+ T cells conferred partial protection. In contrast, CD4−CD8+BV8S2+ T cells had no significant protective effects. The highly protective CD4+BV8S2− subpopulation was CD25+, contained non‐clonotypic T cells, and uniquely expressed the CCR4 chemokine receptor. Protected recipient T/R− mice had marked increases in CD4+CD25+ Treg‐like cells, retention of the pathogenic T cell phenotype in the spleen, and markedly reduced inflammation in CNS tissue. Partially protective CD4+BV8S2+ and CD4− CD8−BV8S2+ subpopulations appeared to be mainly clonotypic T cells with altered functional properties. These three Sp‐EAE protective T cell subpopulations possessed distinctive properties and induced a variety of effects in T/R− recipients, thus implicating differing mechanisms of protection. © 2002 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>CD4+ T cells</subject><subject>CD4-Positive T-Lymphocytes - physiology</subject><subject>CD4-Positive T-Lymphocytes - transplantation</subject><subject>CD8-Positive T-Lymphocytes - physiology</subject><subject>Chemokines - biosynthesis</subject><subject>DNA Nucleotidyltransferases - deficiency</subject><subject>DNA Nucleotidyltransferases - genetics</subject><subject>EAE</subject><subject>Encephalomyelitis, Autoimmune, Experimental - genetics</subject><subject>Encephalomyelitis, Autoimmune, Experimental - immunology</subject><subject>Encephalomyelitis, Autoimmune, Experimental - prevention &amp; control</subject><subject>Female</subject><subject>Flow Cytometry - methods</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - immunology</subject><subject>Immunization, Passive</subject><subject>Lymph Nodes - cytology</subject><subject>Lymph Nodes - immunology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred Strains</subject><subject>Mice, Transgenic</subject><subject>Myelin Basic Protein - immunology</subject><subject>Peptide Fragments - deficiency</subject><subject>Peptide Fragments - genetics</subject><subject>Peptide Fragments - immunology</subject><subject>Phenotype</subject><subject>Receptors, Antigen, T-Cell - immunology</subject><subject>Receptors, Antigen, T-Cell, alpha-beta - deficiency</subject><subject>Receptors, Antigen, T-Cell, alpha-beta - genetics</subject><subject>Receptors, Antigen, T-Cell, alpha-beta - immunology</subject><subject>Receptors, Chemokine - genetics</subject><subject>Receptors, Chemokine - metabolism</subject><subject>Recombinases</subject><subject>regulatory T cells</subject><subject>Spinal Cord - pathology</subject><subject>Spleen - cytology</subject><subject>Spleen - immunology</subject><subject>TCR transgenic mice</subject><issn>0360-4012</issn><issn>1097-4547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1uEzEUhS0EoqGw4AWQV4iqDLHHnrFnGUI6UJUi0vCzsxznTnE7Yw_2RDRvwJoX4Z14EpwmwIrVtezvHp3jg9BjSl5QQvLxlQvpwAtyB40oqUTGCy7uohFhJck4ofkBehDjFSGkqgp2Hx3QnAtZUjFCP2du5S_B-XXE01f8-OVHeZH_-v4DL7CBto24Cb7DixrfPhzjlXc-RGy8ayCk0fUtDID74Acwg_UO60ttXRxw7L0btIOtMtz0EGwH6aLF4Az0X3Truw20drARP7vos9lkdoStw4vpHA9Bu5hMWfMczyd1sjPeWuqsgYfoXqPbCI_28xB9OJktpq-zs3f1m-nkLDOsqEhWFQVIyqFg0CxJoY2sZMoOuWasEaWQlSFCcwK0IE1JlkteAi3ZykguGi0bdoie7nRTsq9riIPqbNz-yC6RErmUVBCZwKMdaIKPMUCj-pRUh42iRG3bUakdddtOYp_sRdfLDlb_yH0dCRjvgG-2hc3_ldTp-fyPZLbbsHGAm78bOlyrUjBRqE_ntRL1CXn7-fS9Yuw3romq_Q</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Matejuk, Agata</creator><creator>Buenafe, Abigail C.</creator><creator>Dwyer, Jami</creator><creator>Ito, Atsushi</creator><creator>Silverman, Marc</creator><creator>Zamora, Alex</creator><creator>Subramanian, Sandhya</creator><creator>Vandenbark, Arthur A.</creator><creator>Offner, Halina</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030101</creationdate><title>Endogenous CD4+BV8S2− T cells from TG BV8S2+ donors confer complete protection against spontaneous experimental encephalomyelitis (Sp-EAE) in TCR transgenic, RAG−/− mice</title><author>Matejuk, Agata ; Buenafe, Abigail C. ; Dwyer, Jami ; Ito, Atsushi ; Silverman, Marc ; Zamora, Alex ; Subramanian, Sandhya ; Vandenbark, Arthur A. ; Offner, Halina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3590-955e814e53efb05ac898995e2a33f76789c07a40e150f60bb46e163dc847fa8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>CD4+ T cells</topic><topic>CD4-Positive T-Lymphocytes - physiology</topic><topic>CD4-Positive T-Lymphocytes - transplantation</topic><topic>CD8-Positive T-Lymphocytes - physiology</topic><topic>Chemokines - biosynthesis</topic><topic>DNA Nucleotidyltransferases - deficiency</topic><topic>DNA Nucleotidyltransferases - genetics</topic><topic>EAE</topic><topic>Encephalomyelitis, Autoimmune, Experimental - genetics</topic><topic>Encephalomyelitis, Autoimmune, Experimental - immunology</topic><topic>Encephalomyelitis, Autoimmune, Experimental - prevention &amp; control</topic><topic>Female</topic><topic>Flow Cytometry - methods</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - immunology</topic><topic>Immunization, Passive</topic><topic>Lymph Nodes - cytology</topic><topic>Lymph Nodes - immunology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred Strains</topic><topic>Mice, Transgenic</topic><topic>Myelin Basic Protein - immunology</topic><topic>Peptide Fragments - deficiency</topic><topic>Peptide Fragments - genetics</topic><topic>Peptide Fragments - immunology</topic><topic>Phenotype</topic><topic>Receptors, Antigen, T-Cell - immunology</topic><topic>Receptors, Antigen, T-Cell, alpha-beta - deficiency</topic><topic>Receptors, Antigen, T-Cell, alpha-beta - genetics</topic><topic>Receptors, Antigen, T-Cell, alpha-beta - immunology</topic><topic>Receptors, Chemokine - genetics</topic><topic>Receptors, Chemokine - metabolism</topic><topic>Recombinases</topic><topic>regulatory T cells</topic><topic>Spinal Cord - pathology</topic><topic>Spleen - cytology</topic><topic>Spleen - immunology</topic><topic>TCR transgenic mice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matejuk, Agata</creatorcontrib><creatorcontrib>Buenafe, Abigail C.</creatorcontrib><creatorcontrib>Dwyer, Jami</creatorcontrib><creatorcontrib>Ito, Atsushi</creatorcontrib><creatorcontrib>Silverman, Marc</creatorcontrib><creatorcontrib>Zamora, Alex</creatorcontrib><creatorcontrib>Subramanian, Sandhya</creatorcontrib><creatorcontrib>Vandenbark, Arthur A.</creatorcontrib><creatorcontrib>Offner, Halina</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroscience research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matejuk, Agata</au><au>Buenafe, Abigail C.</au><au>Dwyer, Jami</au><au>Ito, Atsushi</au><au>Silverman, Marc</au><au>Zamora, Alex</au><au>Subramanian, Sandhya</au><au>Vandenbark, Arthur A.</au><au>Offner, Halina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endogenous CD4+BV8S2− T cells from TG BV8S2+ donors confer complete protection against spontaneous experimental encephalomyelitis (Sp-EAE) in TCR transgenic, RAG−/− mice</atitle><jtitle>Journal of neuroscience research</jtitle><addtitle>J. Neurosci. Res</addtitle><date>2003-01-01</date><risdate>2003</risdate><volume>71</volume><issue>1</issue><spage>89</spage><epage>103</epage><pages>89-103</pages><issn>0360-4012</issn><eissn>1097-4547</eissn><abstract>To investigate regulatory mechanisms which naturally prevent autoimmune diseases, we adopted the genetically restricted immunodeficient (RAG‐1−/−) myelin basic protein (MBP)‐specific T cell receptor (TCR) double transgenic (T/R−) mouse model of spontaneous experimental autoimmune encephalomyelitis (Sp‐EAE). Sp‐EAE can be prevented after transfer of CD4+splenocytes from naïve immunocompetent mice. RAG‐1+ double transgenic (T/R+) mice do not develop Sp‐EAE due to the presence of a very small population (about 2%) of non‐Tg TCR specificities. In this study, CD4+BV8S2+ T cells that predominate in T/R+ mice, and three additional populations, CD4+BV8S2−, CD4−CD8−BV8S2+, and CD4−CD8+BV8S2+ T cells that expanded in T/R+ mice after immunization with MBP‐Ac1‐11 peptide, were studied for their ability to prevent Sp‐EAE in T/R− mice. Only the CD4+BV8S2− T cell population conferred complete protection against Sp‐EAE, similar to unfractionated splenocytes from non‐Tg donors, whereas CD4−CD8−BV8S2+ and CD4+BV8S2+ T cells conferred partial protection. In contrast, CD4−CD8+BV8S2+ T cells had no significant protective effects. The highly protective CD4+BV8S2− subpopulation was CD25+, contained non‐clonotypic T cells, and uniquely expressed the CCR4 chemokine receptor. Protected recipient T/R− mice had marked increases in CD4+CD25+ Treg‐like cells, retention of the pathogenic T cell phenotype in the spleen, and markedly reduced inflammation in CNS tissue. Partially protective CD4+BV8S2+ and CD4− CD8−BV8S2+ subpopulations appeared to be mainly clonotypic T cells with altered functional properties. These three Sp‐EAE protective T cell subpopulations possessed distinctive properties and induced a variety of effects in T/R− recipients, thus implicating differing mechanisms of protection. © 2002 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>12478617</pmid><doi>10.1002/jnr.10450</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-4012
ispartof Journal of neuroscience research, 2003-01, Vol.71 (1), p.89-103
issn 0360-4012
1097-4547
language eng
recordid cdi_proquest_miscellaneous_72881708
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
CD4+ T cells
CD4-Positive T-Lymphocytes - physiology
CD4-Positive T-Lymphocytes - transplantation
CD8-Positive T-Lymphocytes - physiology
Chemokines - biosynthesis
DNA Nucleotidyltransferases - deficiency
DNA Nucleotidyltransferases - genetics
EAE
Encephalomyelitis, Autoimmune, Experimental - genetics
Encephalomyelitis, Autoimmune, Experimental - immunology
Encephalomyelitis, Autoimmune, Experimental - prevention & control
Female
Flow Cytometry - methods
Homeodomain Proteins - genetics
Homeodomain Proteins - immunology
Immunization, Passive
Lymph Nodes - cytology
Lymph Nodes - immunology
Male
Mice
Mice, Inbred Strains
Mice, Transgenic
Myelin Basic Protein - immunology
Peptide Fragments - deficiency
Peptide Fragments - genetics
Peptide Fragments - immunology
Phenotype
Receptors, Antigen, T-Cell - immunology
Receptors, Antigen, T-Cell, alpha-beta - deficiency
Receptors, Antigen, T-Cell, alpha-beta - genetics
Receptors, Antigen, T-Cell, alpha-beta - immunology
Receptors, Chemokine - genetics
Receptors, Chemokine - metabolism
Recombinases
regulatory T cells
Spinal Cord - pathology
Spleen - cytology
Spleen - immunology
TCR transgenic mice
title Endogenous CD4+BV8S2− T cells from TG BV8S2+ donors confer complete protection against spontaneous experimental encephalomyelitis (Sp-EAE) in TCR transgenic, RAG−/− mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endogenous%20CD4+BV8S2%E2%88%92%20T%20cells%20from%20TG%20BV8S2+%20donors%20confer%20complete%20protection%20against%20spontaneous%20experimental%20encephalomyelitis%20(Sp-EAE)%20in%20TCR%20transgenic,%20RAG%E2%88%92/%E2%88%92%20mice&rft.jtitle=Journal%20of%20neuroscience%20research&rft.au=Matejuk,%20Agata&rft.date=2003-01-01&rft.volume=71&rft.issue=1&rft.spage=89&rft.epage=103&rft.pages=89-103&rft.issn=0360-4012&rft.eissn=1097-4547&rft_id=info:doi/10.1002/jnr.10450&rft_dat=%3Cproquest_cross%3E72881708%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72881708&rft_id=info:pmid/12478617&rfr_iscdi=true