Mechanism of the spontaneous transfer of unconjugated bilirubin between small unilamellar phosphatidylcholine vesicles

Unconjugated bilirubin (bilirubin-IX alpha), the hydrophobic end product of heme degradation, is esterified in the hepatocyte endoplasmic reticulum to water-soluble conjugates prior to excretion in bile. To characterize the process of intracellular bilirubin transport, the kinetic and thermodynamic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1992-03, Vol.31 (12), p.3184-3192
Hauptverfasser: Zucker, Stephen D, Storch, Judith, Zeidel, Mark L, Gollan, John L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3192
container_issue 12
container_start_page 3184
container_title Biochemistry (Easton)
container_volume 31
creator Zucker, Stephen D
Storch, Judith
Zeidel, Mark L
Gollan, John L
description Unconjugated bilirubin (bilirubin-IX alpha), the hydrophobic end product of heme degradation, is esterified in the hepatocyte endoplasmic reticulum to water-soluble conjugates prior to excretion in bile. To characterize the process of intracellular bilirubin transport, the kinetic and thermodynamic activation parameters for the spontaneous transfer of bilirubin between small unilamellar egg lecithin vesicles were determined. Bilirubin-IX alpha was added to donor vesicles labeled with the fluorescent phospholipid probe, (5-(dimethylamino)naphthalene-1-sulfonyl) dipalmitoyl-L-alpha-phosphatidylethanolamine (dansyl-PE). When bound to the donor vesicles, bilirubin quenches the dansyl probe fluorescence through resonance energy transfer. The movement of bilirubin from dansyl-labeled donor vesicles to unlabeled acceptor vesicles was monitored directly by the reemergence of dansyl fluorescence over time. Vesicle fusion and intervesicle transfer of the dansyl-PE probe were excluded by quasielastic light scattering and fluorescence resonance energy transfer studies. Stopped-flow analysis demonstrated that the transfer of bilirubin was described by a single-exponential function with a mean half-time of 2.0 +/- 0.1 ms (+/- SD) at 37 degrees C. The rate of bilirubin transfer was independent of acceptor vesicle concentration and decreased with increasing buffer ionic strength, indicating that intermembrane transfer occurred via aqueous diffusion, rather than vesicle collisions. The free energy of activation (delta G++) for the dissociation of bilirubin from donor vesicles was 14.2 kcal.mol-1. These studies suggest that bilirubin is associated with phospholipid bilayers at the membrane-water interface. We postulate that the movement of unconjugated bilirubin between intracellular membranes occurs via spontaneous transfer through the aqueous phase.
doi_str_mv 10.1021/bi00127a020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72861663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72861663</sourcerecordid><originalsourceid>FETCH-LOGICAL-a383t-c8e768d1366d9f4e44a98b6c37e1c354378e95cc4ba2fb9a65866c4f9b12e0f53</originalsourceid><addsrcrecordid>eNpt0E1v1DAQBmALgcpSOHFGygGVAwrYjj-SI6oKW2mBSpQLF2viTIgXxwl2Uui_J9usCgdO1uh9NBq_hDxn9A2jnL2tHaWMa6CcPiAbJjnNRVXJh2RDKVU5rxR9TJ6ktF9GQbU4ISdMSqGp2JCbj2g7CC712dBmU4dZGocwQcBhTtkUIaQW4yGbgx3Cfv4OEzZZ7byLc-1CVuP0CzFkqQfvF-Q89Og9xGzshjR2MLnm1ttu8C5gdoPJWY_pKXnUgk_47Piekq_vL67Pt_nu84fL83e7HIqymHJbolZlwwqlmqoVKARUZa1soZHZQopCl1hJa0UNvK0rULJUyoq2qhlH2srilJyte8c4_JwxTaZ3yR7uu_ug0bxUTKliga9XaOOQUsTWjNH1EG8No-bQsvmn5UW_OK6d6x6bv3atdclfHnNIFny71GhdumeSKy15tbB8ZS5N-Ps-hvjDKF1oaa6vvpgr-kmy7bet2S3-1erBJrMf5hiW7v574B_cKaK0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72861663</pqid></control><display><type>article</type><title>Mechanism of the spontaneous transfer of unconjugated bilirubin between small unilamellar phosphatidylcholine vesicles</title><source>MEDLINE</source><source>ACS Publications</source><creator>Zucker, Stephen D ; Storch, Judith ; Zeidel, Mark L ; Gollan, John L</creator><creatorcontrib>Zucker, Stephen D ; Storch, Judith ; Zeidel, Mark L ; Gollan, John L</creatorcontrib><description>Unconjugated bilirubin (bilirubin-IX alpha), the hydrophobic end product of heme degradation, is esterified in the hepatocyte endoplasmic reticulum to water-soluble conjugates prior to excretion in bile. To characterize the process of intracellular bilirubin transport, the kinetic and thermodynamic activation parameters for the spontaneous transfer of bilirubin between small unilamellar egg lecithin vesicles were determined. Bilirubin-IX alpha was added to donor vesicles labeled with the fluorescent phospholipid probe, (5-(dimethylamino)naphthalene-1-sulfonyl) dipalmitoyl-L-alpha-phosphatidylethanolamine (dansyl-PE). When bound to the donor vesicles, bilirubin quenches the dansyl probe fluorescence through resonance energy transfer. The movement of bilirubin from dansyl-labeled donor vesicles to unlabeled acceptor vesicles was monitored directly by the reemergence of dansyl fluorescence over time. Vesicle fusion and intervesicle transfer of the dansyl-PE probe were excluded by quasielastic light scattering and fluorescence resonance energy transfer studies. Stopped-flow analysis demonstrated that the transfer of bilirubin was described by a single-exponential function with a mean half-time of 2.0 +/- 0.1 ms (+/- SD) at 37 degrees C. The rate of bilirubin transfer was independent of acceptor vesicle concentration and decreased with increasing buffer ionic strength, indicating that intermembrane transfer occurred via aqueous diffusion, rather than vesicle collisions. The free energy of activation (delta G++) for the dissociation of bilirubin from donor vesicles was 14.2 kcal.mol-1. These studies suggest that bilirubin is associated with phospholipid bilayers at the membrane-water interface. We postulate that the movement of unconjugated bilirubin between intracellular membranes occurs via spontaneous transfer through the aqueous phase.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi00127a020</identifier><identifier>PMID: 1554704</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Bilirubin - chemistry ; Biological and medical sciences ; Biological Transport ; Buffers ; Cell physiology ; Fundamental and applied biological sciences. Psychology ; Kinetics ; Lipid Bilayers - metabolism ; Membrane and intracellular transports ; Membrane Fusion ; Membrane Lipids - chemistry ; Molecular and cellular biology ; Osmolar Concentration ; Phosphatidylcholines - chemistry ; Solutions ; Thermodynamics ; Viscosity</subject><ispartof>Biochemistry (Easton), 1992-03, Vol.31 (12), p.3184-3192</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a383t-c8e768d1366d9f4e44a98b6c37e1c354378e95cc4ba2fb9a65866c4f9b12e0f53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi00127a020$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi00127a020$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5267529$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1554704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zucker, Stephen D</creatorcontrib><creatorcontrib>Storch, Judith</creatorcontrib><creatorcontrib>Zeidel, Mark L</creatorcontrib><creatorcontrib>Gollan, John L</creatorcontrib><title>Mechanism of the spontaneous transfer of unconjugated bilirubin between small unilamellar phosphatidylcholine vesicles</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Unconjugated bilirubin (bilirubin-IX alpha), the hydrophobic end product of heme degradation, is esterified in the hepatocyte endoplasmic reticulum to water-soluble conjugates prior to excretion in bile. To characterize the process of intracellular bilirubin transport, the kinetic and thermodynamic activation parameters for the spontaneous transfer of bilirubin between small unilamellar egg lecithin vesicles were determined. Bilirubin-IX alpha was added to donor vesicles labeled with the fluorescent phospholipid probe, (5-(dimethylamino)naphthalene-1-sulfonyl) dipalmitoyl-L-alpha-phosphatidylethanolamine (dansyl-PE). When bound to the donor vesicles, bilirubin quenches the dansyl probe fluorescence through resonance energy transfer. The movement of bilirubin from dansyl-labeled donor vesicles to unlabeled acceptor vesicles was monitored directly by the reemergence of dansyl fluorescence over time. Vesicle fusion and intervesicle transfer of the dansyl-PE probe were excluded by quasielastic light scattering and fluorescence resonance energy transfer studies. Stopped-flow analysis demonstrated that the transfer of bilirubin was described by a single-exponential function with a mean half-time of 2.0 +/- 0.1 ms (+/- SD) at 37 degrees C. The rate of bilirubin transfer was independent of acceptor vesicle concentration and decreased with increasing buffer ionic strength, indicating that intermembrane transfer occurred via aqueous diffusion, rather than vesicle collisions. The free energy of activation (delta G++) for the dissociation of bilirubin from donor vesicles was 14.2 kcal.mol-1. These studies suggest that bilirubin is associated with phospholipid bilayers at the membrane-water interface. We postulate that the movement of unconjugated bilirubin between intracellular membranes occurs via spontaneous transfer through the aqueous phase.</description><subject>Bilirubin - chemistry</subject><subject>Biological and medical sciences</subject><subject>Biological Transport</subject><subject>Buffers</subject><subject>Cell physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Kinetics</subject><subject>Lipid Bilayers - metabolism</subject><subject>Membrane and intracellular transports</subject><subject>Membrane Fusion</subject><subject>Membrane Lipids - chemistry</subject><subject>Molecular and cellular biology</subject><subject>Osmolar Concentration</subject><subject>Phosphatidylcholines - chemistry</subject><subject>Solutions</subject><subject>Thermodynamics</subject><subject>Viscosity</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E1v1DAQBmALgcpSOHFGygGVAwrYjj-SI6oKW2mBSpQLF2viTIgXxwl2Uui_J9usCgdO1uh9NBq_hDxn9A2jnL2tHaWMa6CcPiAbJjnNRVXJh2RDKVU5rxR9TJ6ktF9GQbU4ISdMSqGp2JCbj2g7CC712dBmU4dZGocwQcBhTtkUIaQW4yGbgx3Cfv4OEzZZ7byLc-1CVuP0CzFkqQfvF-Q89Og9xGzshjR2MLnm1ttu8C5gdoPJWY_pKXnUgk_47Piekq_vL67Pt_nu84fL83e7HIqymHJbolZlwwqlmqoVKARUZa1soZHZQopCl1hJa0UNvK0rULJUyoq2qhlH2srilJyte8c4_JwxTaZ3yR7uu_ug0bxUTKliga9XaOOQUsTWjNH1EG8No-bQsvmn5UW_OK6d6x6bv3atdclfHnNIFny71GhdumeSKy15tbB8ZS5N-Ps-hvjDKF1oaa6vvpgr-kmy7bet2S3-1erBJrMf5hiW7v574B_cKaK0</recordid><startdate>19920331</startdate><enddate>19920331</enddate><creator>Zucker, Stephen D</creator><creator>Storch, Judith</creator><creator>Zeidel, Mark L</creator><creator>Gollan, John L</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19920331</creationdate><title>Mechanism of the spontaneous transfer of unconjugated bilirubin between small unilamellar phosphatidylcholine vesicles</title><author>Zucker, Stephen D ; Storch, Judith ; Zeidel, Mark L ; Gollan, John L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a383t-c8e768d1366d9f4e44a98b6c37e1c354378e95cc4ba2fb9a65866c4f9b12e0f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Bilirubin - chemistry</topic><topic>Biological and medical sciences</topic><topic>Biological Transport</topic><topic>Buffers</topic><topic>Cell physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Kinetics</topic><topic>Lipid Bilayers - metabolism</topic><topic>Membrane and intracellular transports</topic><topic>Membrane Fusion</topic><topic>Membrane Lipids - chemistry</topic><topic>Molecular and cellular biology</topic><topic>Osmolar Concentration</topic><topic>Phosphatidylcholines - chemistry</topic><topic>Solutions</topic><topic>Thermodynamics</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zucker, Stephen D</creatorcontrib><creatorcontrib>Storch, Judith</creatorcontrib><creatorcontrib>Zeidel, Mark L</creatorcontrib><creatorcontrib>Gollan, John L</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zucker, Stephen D</au><au>Storch, Judith</au><au>Zeidel, Mark L</au><au>Gollan, John L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of the spontaneous transfer of unconjugated bilirubin between small unilamellar phosphatidylcholine vesicles</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>1992-03-31</date><risdate>1992</risdate><volume>31</volume><issue>12</issue><spage>3184</spage><epage>3192</epage><pages>3184-3192</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Unconjugated bilirubin (bilirubin-IX alpha), the hydrophobic end product of heme degradation, is esterified in the hepatocyte endoplasmic reticulum to water-soluble conjugates prior to excretion in bile. To characterize the process of intracellular bilirubin transport, the kinetic and thermodynamic activation parameters for the spontaneous transfer of bilirubin between small unilamellar egg lecithin vesicles were determined. Bilirubin-IX alpha was added to donor vesicles labeled with the fluorescent phospholipid probe, (5-(dimethylamino)naphthalene-1-sulfonyl) dipalmitoyl-L-alpha-phosphatidylethanolamine (dansyl-PE). When bound to the donor vesicles, bilirubin quenches the dansyl probe fluorescence through resonance energy transfer. The movement of bilirubin from dansyl-labeled donor vesicles to unlabeled acceptor vesicles was monitored directly by the reemergence of dansyl fluorescence over time. Vesicle fusion and intervesicle transfer of the dansyl-PE probe were excluded by quasielastic light scattering and fluorescence resonance energy transfer studies. Stopped-flow analysis demonstrated that the transfer of bilirubin was described by a single-exponential function with a mean half-time of 2.0 +/- 0.1 ms (+/- SD) at 37 degrees C. The rate of bilirubin transfer was independent of acceptor vesicle concentration and decreased with increasing buffer ionic strength, indicating that intermembrane transfer occurred via aqueous diffusion, rather than vesicle collisions. The free energy of activation (delta G++) for the dissociation of bilirubin from donor vesicles was 14.2 kcal.mol-1. These studies suggest that bilirubin is associated with phospholipid bilayers at the membrane-water interface. We postulate that the movement of unconjugated bilirubin between intracellular membranes occurs via spontaneous transfer through the aqueous phase.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>1554704</pmid><doi>10.1021/bi00127a020</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 1992-03, Vol.31 (12), p.3184-3192
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_72861663
source MEDLINE; ACS Publications
subjects Bilirubin - chemistry
Biological and medical sciences
Biological Transport
Buffers
Cell physiology
Fundamental and applied biological sciences. Psychology
Kinetics
Lipid Bilayers - metabolism
Membrane and intracellular transports
Membrane Fusion
Membrane Lipids - chemistry
Molecular and cellular biology
Osmolar Concentration
Phosphatidylcholines - chemistry
Solutions
Thermodynamics
Viscosity
title Mechanism of the spontaneous transfer of unconjugated bilirubin between small unilamellar phosphatidylcholine vesicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20the%20spontaneous%20transfer%20of%20unconjugated%20bilirubin%20between%20small%20unilamellar%20phosphatidylcholine%20vesicles&rft.jtitle=Biochemistry%20(Easton)&rft.au=Zucker,%20Stephen%20D&rft.date=1992-03-31&rft.volume=31&rft.issue=12&rft.spage=3184&rft.epage=3192&rft.pages=3184-3192&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi00127a020&rft_dat=%3Cproquest_cross%3E72861663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72861663&rft_id=info:pmid/1554704&rfr_iscdi=true