Higher order statistics in computer vision: analysis of images and detection of extraneous objects in images
The aim of this work is to present methods for classifying images and locating extraneous objects within images. Our methods make use of higher order statistics, transforms of data into the frequency domain, and characteristics of the resulting clusters.
Gespeichert in:
Veröffentlicht in: | Annals of the New York Academy of Sciences 2002-12, Vol.980 (1), p.152-167 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 167 |
---|---|
container_issue | 1 |
container_start_page | 152 |
container_title | Annals of the New York Academy of Sciences |
container_volume | 980 |
creator | Farhadi, Ali Shahshahani, Mehrdad |
description | The aim of this work is to present methods for classifying images and locating extraneous objects within images. Our methods make use of higher order statistics, transforms of data into the frequency domain, and characteristics of the resulting clusters. |
doi_str_mv | 10.1111/j.1749-6632.2002.tb04895.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72848694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72848694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-212240fcfcaf03b8974e3103feb62289cb47c418fd465cfd126284ef11ca65a3</originalsourceid><addsrcrecordid>eNpFkEFPwyAYhonRuDn9C6bx4K0VKG3pbmZRZ7LEy-6EUpg0bZlAzfbvpbZRDpC8PN_HxwPAA4IJCuupSVBByjjPU5xgCHHiK0homSWnC7D8u7oESwiLIqYlThfgxrkGQoQpKa7BAuGsJJDSJWi3-vApbWRsHXbnudfOa-Ei3UfCdMfBh_hbO236dcR73p6ddpFRke74QboQ1VEtvRQ-EGMuT97yXpohUFUT8t9WE30LrhRvnbybzxXYv77sN9t49_H2vnnexQJn1McYYUygEkpwBdOKlgWRKYKpklWOMS1FRQpBEFU1yTOhaoTz8C-pEBI8z3i6Ao9T26M1X4N0nnXaCdm201ysCDTNSxLA9QQKa5yzUrGjDZPaM0OQjapZw0afbPTJRtVsVs1Oofh-fmWoOln_l85u0x-1y33d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72848694</pqid></control><display><type>article</type><title>Higher order statistics in computer vision: analysis of images and detection of extraneous objects in images</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Farhadi, Ali ; Shahshahani, Mehrdad</creator><creatorcontrib>Farhadi, Ali ; Shahshahani, Mehrdad</creatorcontrib><description>The aim of this work is to present methods for classifying images and locating extraneous objects within images. Our methods make use of higher order statistics, transforms of data into the frequency domain, and characteristics of the resulting clusters.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/j.1749-6632.2002.tb04895.x</identifier><identifier>PMID: 12594088</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Cluster Analysis ; Fourier Analysis ; Humans ; Image Processing, Computer-Assisted ; Models, Theoretical ; Pattern Recognition, Automated ; Photography ; Reproducibility of Results</subject><ispartof>Annals of the New York Academy of Sciences, 2002-12, Vol.980 (1), p.152-167</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c258t-212240fcfcaf03b8974e3103feb62289cb47c418fd465cfd126284ef11ca65a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12594088$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Farhadi, Ali</creatorcontrib><creatorcontrib>Shahshahani, Mehrdad</creatorcontrib><title>Higher order statistics in computer vision: analysis of images and detection of extraneous objects in images</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>The aim of this work is to present methods for classifying images and locating extraneous objects within images. Our methods make use of higher order statistics, transforms of data into the frequency domain, and characteristics of the resulting clusters.</description><subject>Animals</subject><subject>Cluster Analysis</subject><subject>Fourier Analysis</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Models, Theoretical</subject><subject>Pattern Recognition, Automated</subject><subject>Photography</subject><subject>Reproducibility of Results</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkEFPwyAYhonRuDn9C6bx4K0VKG3pbmZRZ7LEy-6EUpg0bZlAzfbvpbZRDpC8PN_HxwPAA4IJCuupSVBByjjPU5xgCHHiK0homSWnC7D8u7oESwiLIqYlThfgxrkGQoQpKa7BAuGsJJDSJWi3-vApbWRsHXbnudfOa-Ei3UfCdMfBh_hbO236dcR73p6ddpFRke74QboQ1VEtvRQ-EGMuT97yXpohUFUT8t9WE30LrhRvnbybzxXYv77sN9t49_H2vnnexQJn1McYYUygEkpwBdOKlgWRKYKpklWOMS1FRQpBEFU1yTOhaoTz8C-pEBI8z3i6Ao9T26M1X4N0nnXaCdm201ysCDTNSxLA9QQKa5yzUrGjDZPaM0OQjapZw0afbPTJRtVsVs1Oofh-fmWoOln_l85u0x-1y33d</recordid><startdate>200212</startdate><enddate>200212</enddate><creator>Farhadi, Ali</creator><creator>Shahshahani, Mehrdad</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200212</creationdate><title>Higher order statistics in computer vision: analysis of images and detection of extraneous objects in images</title><author>Farhadi, Ali ; Shahshahani, Mehrdad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-212240fcfcaf03b8974e3103feb62289cb47c418fd465cfd126284ef11ca65a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Cluster Analysis</topic><topic>Fourier Analysis</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Models, Theoretical</topic><topic>Pattern Recognition, Automated</topic><topic>Photography</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farhadi, Ali</creatorcontrib><creatorcontrib>Shahshahani, Mehrdad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farhadi, Ali</au><au>Shahshahani, Mehrdad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher order statistics in computer vision: analysis of images and detection of extraneous objects in images</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2002-12</date><risdate>2002</risdate><volume>980</volume><issue>1</issue><spage>152</spage><epage>167</epage><pages>152-167</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><abstract>The aim of this work is to present methods for classifying images and locating extraneous objects within images. Our methods make use of higher order statistics, transforms of data into the frequency domain, and characteristics of the resulting clusters.</abstract><cop>United States</cop><pmid>12594088</pmid><doi>10.1111/j.1749-6632.2002.tb04895.x</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0077-8923 |
ispartof | Annals of the New York Academy of Sciences, 2002-12, Vol.980 (1), p.152-167 |
issn | 0077-8923 1749-6632 |
language | eng |
recordid | cdi_proquest_miscellaneous_72848694 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Cluster Analysis Fourier Analysis Humans Image Processing, Computer-Assisted Models, Theoretical Pattern Recognition, Automated Photography Reproducibility of Results |
title | Higher order statistics in computer vision: analysis of images and detection of extraneous objects in images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher%20order%20statistics%20in%20computer%20vision:%20analysis%20of%20images%20and%20detection%20of%20extraneous%20objects%20in%20images&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Farhadi,%20Ali&rft.date=2002-12&rft.volume=980&rft.issue=1&rft.spage=152&rft.epage=167&rft.pages=152-167&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1111/j.1749-6632.2002.tb04895.x&rft_dat=%3Cproquest_cross%3E72848694%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72848694&rft_id=info:pmid/12594088&rfr_iscdi=true |