Higher order statistics in computer vision: analysis of images and detection of extraneous objects in images

The aim of this work is to present methods for classifying images and locating extraneous objects within images. Our methods make use of higher order statistics, transforms of data into the frequency domain, and characteristics of the resulting clusters.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the New York Academy of Sciences 2002-12, Vol.980 (1), p.152-167
Hauptverfasser: Farhadi, Ali, Shahshahani, Mehrdad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue 1
container_start_page 152
container_title Annals of the New York Academy of Sciences
container_volume 980
creator Farhadi, Ali
Shahshahani, Mehrdad
description The aim of this work is to present methods for classifying images and locating extraneous objects within images. Our methods make use of higher order statistics, transforms of data into the frequency domain, and characteristics of the resulting clusters.
doi_str_mv 10.1111/j.1749-6632.2002.tb04895.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72848694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72848694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-212240fcfcaf03b8974e3103feb62289cb47c418fd465cfd126284ef11ca65a3</originalsourceid><addsrcrecordid>eNpFkEFPwyAYhonRuDn9C6bx4K0VKG3pbmZRZ7LEy-6EUpg0bZlAzfbvpbZRDpC8PN_HxwPAA4IJCuupSVBByjjPU5xgCHHiK0homSWnC7D8u7oESwiLIqYlThfgxrkGQoQpKa7BAuGsJJDSJWi3-vApbWRsHXbnudfOa-Ei3UfCdMfBh_hbO236dcR73p6ddpFRke74QboQ1VEtvRQ-EGMuT97yXpohUFUT8t9WE30LrhRvnbybzxXYv77sN9t49_H2vnnexQJn1McYYUygEkpwBdOKlgWRKYKpklWOMS1FRQpBEFU1yTOhaoTz8C-pEBI8z3i6Ao9T26M1X4N0nnXaCdm201ysCDTNSxLA9QQKa5yzUrGjDZPaM0OQjapZw0afbPTJRtVsVs1Oofh-fmWoOln_l85u0x-1y33d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72848694</pqid></control><display><type>article</type><title>Higher order statistics in computer vision: analysis of images and detection of extraneous objects in images</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Farhadi, Ali ; Shahshahani, Mehrdad</creator><creatorcontrib>Farhadi, Ali ; Shahshahani, Mehrdad</creatorcontrib><description>The aim of this work is to present methods for classifying images and locating extraneous objects within images. Our methods make use of higher order statistics, transforms of data into the frequency domain, and characteristics of the resulting clusters.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/j.1749-6632.2002.tb04895.x</identifier><identifier>PMID: 12594088</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Cluster Analysis ; Fourier Analysis ; Humans ; Image Processing, Computer-Assisted ; Models, Theoretical ; Pattern Recognition, Automated ; Photography ; Reproducibility of Results</subject><ispartof>Annals of the New York Academy of Sciences, 2002-12, Vol.980 (1), p.152-167</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c258t-212240fcfcaf03b8974e3103feb62289cb47c418fd465cfd126284ef11ca65a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12594088$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Farhadi, Ali</creatorcontrib><creatorcontrib>Shahshahani, Mehrdad</creatorcontrib><title>Higher order statistics in computer vision: analysis of images and detection of extraneous objects in images</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>The aim of this work is to present methods for classifying images and locating extraneous objects within images. Our methods make use of higher order statistics, transforms of data into the frequency domain, and characteristics of the resulting clusters.</description><subject>Animals</subject><subject>Cluster Analysis</subject><subject>Fourier Analysis</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Models, Theoretical</subject><subject>Pattern Recognition, Automated</subject><subject>Photography</subject><subject>Reproducibility of Results</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkEFPwyAYhonRuDn9C6bx4K0VKG3pbmZRZ7LEy-6EUpg0bZlAzfbvpbZRDpC8PN_HxwPAA4IJCuupSVBByjjPU5xgCHHiK0homSWnC7D8u7oESwiLIqYlThfgxrkGQoQpKa7BAuGsJJDSJWi3-vApbWRsHXbnudfOa-Ei3UfCdMfBh_hbO236dcR73p6ddpFRke74QboQ1VEtvRQ-EGMuT97yXpohUFUT8t9WE30LrhRvnbybzxXYv77sN9t49_H2vnnexQJn1McYYUygEkpwBdOKlgWRKYKpklWOMS1FRQpBEFU1yTOhaoTz8C-pEBI8z3i6Ao9T26M1X4N0nnXaCdm201ysCDTNSxLA9QQKa5yzUrGjDZPaM0OQjapZw0afbPTJRtVsVs1Oofh-fmWoOln_l85u0x-1y33d</recordid><startdate>200212</startdate><enddate>200212</enddate><creator>Farhadi, Ali</creator><creator>Shahshahani, Mehrdad</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200212</creationdate><title>Higher order statistics in computer vision: analysis of images and detection of extraneous objects in images</title><author>Farhadi, Ali ; Shahshahani, Mehrdad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-212240fcfcaf03b8974e3103feb62289cb47c418fd465cfd126284ef11ca65a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Cluster Analysis</topic><topic>Fourier Analysis</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Models, Theoretical</topic><topic>Pattern Recognition, Automated</topic><topic>Photography</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farhadi, Ali</creatorcontrib><creatorcontrib>Shahshahani, Mehrdad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farhadi, Ali</au><au>Shahshahani, Mehrdad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher order statistics in computer vision: analysis of images and detection of extraneous objects in images</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2002-12</date><risdate>2002</risdate><volume>980</volume><issue>1</issue><spage>152</spage><epage>167</epage><pages>152-167</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><abstract>The aim of this work is to present methods for classifying images and locating extraneous objects within images. Our methods make use of higher order statistics, transforms of data into the frequency domain, and characteristics of the resulting clusters.</abstract><cop>United States</cop><pmid>12594088</pmid><doi>10.1111/j.1749-6632.2002.tb04895.x</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0077-8923
ispartof Annals of the New York Academy of Sciences, 2002-12, Vol.980 (1), p.152-167
issn 0077-8923
1749-6632
language eng
recordid cdi_proquest_miscellaneous_72848694
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Cluster Analysis
Fourier Analysis
Humans
Image Processing, Computer-Assisted
Models, Theoretical
Pattern Recognition, Automated
Photography
Reproducibility of Results
title Higher order statistics in computer vision: analysis of images and detection of extraneous objects in images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher%20order%20statistics%20in%20computer%20vision:%20analysis%20of%20images%20and%20detection%20of%20extraneous%20objects%20in%20images&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Farhadi,%20Ali&rft.date=2002-12&rft.volume=980&rft.issue=1&rft.spage=152&rft.epage=167&rft.pages=152-167&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1111/j.1749-6632.2002.tb04895.x&rft_dat=%3Cproquest_cross%3E72848694%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72848694&rft_id=info:pmid/12594088&rfr_iscdi=true