Nitrate removal rate in a continuous column denitrification reactor using hydrogen generated by electrolysis with carbon anodes and stainless cathodes

An autotrophic continuous denitrification process, using hydrogen generated by electrolysis with activated carbon anodes, was experimentally demonstrated to be an effective nitrate removal process. Several fixed bed columns with polypropylene packing and honeycomb shaped activated carbon anodes and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2002-01, Vol.46 (11-12), p.39-44
Hauptverfasser: DADANG, S, KAWANISHI, T, SHIMIZU, N, HAYASHI, Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44
container_issue 11-12
container_start_page 39
container_title Water science and technology
container_volume 46
creator DADANG, S
KAWANISHI, T
SHIMIZU, N
HAYASHI, Y
description An autotrophic continuous denitrification process, using hydrogen generated by electrolysis with activated carbon anodes, was experimentally demonstrated to be an effective nitrate removal process. Several fixed bed columns with polypropylene packing and honeycomb shaped activated carbon anodes and stainless rod cathodes were set in a thermostat chamber at 30 degrees C, and potassium nitrate enriched tap water as influent was supplied at various flow rates and electric currents. Although the anode is in the same column where microbial biomass grows, sufficient nitrate removal was observed. For example, almost complete removal of nitrate and nitrite was observed at a hydraulic retention time (HRT) as short as 1.8 h. A model assuming successive denitrification reactions and plug-flow process, nitrate reduction rate = k1 [NO3-] [H2], and nitrite reduction rate = k2 [NO2-] [H2](1.5) was proposed. Calculated results with k1 = 1.3 mmol(-1) h(-1) and k2 = 3.3 mmol(-1.5) x h(-1) agreed well with all the experimental results.
doi_str_mv 10.2166/wst.2002.0714
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72816661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1943433191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-b9f1b9c398c2a5fff11bed2c35f1d4d7490a53a986954681a1b134cc0b9d23a43</originalsourceid><addsrcrecordid>eNqNks1vFSEQwIkfsc_ao1dDYjRe9skAC8vRNPUjafSi5w0LbB_NLlRgbd4_4t9b1veSJh6sBzJAfjOTmfwQeglkS0GI97e5bCkhdEsk8EdoA0qJRklGH6MzJTvoOGOKMyqfoA2hkjVAKTtBz3O-JoRIxskzdAK0pUwyskG_v_qSdHE4uTn-0hP-8_ABa2xiKD4sccn1Oi1zwNaFSvvRG118DDVHmxITXrIPV3i3tyleuYDrcWsZi4c9dpMzJcVpn33Gt77ssNFpqMk6ROtyDRbnon2YXK6NdNmt3y_Q01FP2Z0d4yn68fHi-_nn5vLbpy_nHy4bwyUrzaBGGJRhqjNUt-M4AgzOUsPaESy3kiuiW6ZVJ1TLRQcaBmDcGDIoS5nm7BS9PdS9SfHn4nLpZ5-NmyYdXB28l7SrSxfwIEhVbVbPf4BcKEUfBkEA7ygTFXz3b5BQLlpyQF__hV7HJYW6wR6qFFUNUOsszYEyKeac3NjfJD_rtK-l-lWyvkrWr5L1q2SVf3Wsugyzs_f00aIKvDkCOhs9jUkH4_M9x9uqJAF2B6Ml2Zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943433191</pqid></control><display><type>article</type><title>Nitrate removal rate in a continuous column denitrification reactor using hydrogen generated by electrolysis with carbon anodes and stainless cathodes</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>DADANG, S ; KAWANISHI, T ; SHIMIZU, N ; HAYASHI, Y</creator><contributor>Kusuda, T ; Utsumi, H (eds)</contributor><creatorcontrib>DADANG, S ; KAWANISHI, T ; SHIMIZU, N ; HAYASHI, Y ; Kusuda, T ; Utsumi, H (eds)</creatorcontrib><description>An autotrophic continuous denitrification process, using hydrogen generated by electrolysis with activated carbon anodes, was experimentally demonstrated to be an effective nitrate removal process. Several fixed bed columns with polypropylene packing and honeycomb shaped activated carbon anodes and stainless rod cathodes were set in a thermostat chamber at 30 degrees C, and potassium nitrate enriched tap water as influent was supplied at various flow rates and electric currents. Although the anode is in the same column where microbial biomass grows, sufficient nitrate removal was observed. For example, almost complete removal of nitrate and nitrite was observed at a hydraulic retention time (HRT) as short as 1.8 h. A model assuming successive denitrification reactions and plug-flow process, nitrate reduction rate = k1 [NO3-] [H2], and nitrite reduction rate = k2 [NO2-] [H2](1.5) was proposed. Calculated results with k1 = 1.3 mmol(-1) h(-1) and k2 = 3.3 mmol(-1.5) x h(-1) agreed well with all the experimental results.</description><identifier>ISSN: 0273-1223</identifier><identifier>ISBN: 9781843394327</identifier><identifier>ISBN: 1843394324</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2002.0714</identifier><identifier>PMID: 12523730</identifier><identifier>CODEN: WSTED4</identifier><language>eng</language><publisher>London: IWA Publishers</publisher><subject>Activated carbon ; Anode effect ; Anodes ; Applied sciences ; Biofilms ; Biological and medical sciences ; Biological treatment of waters ; Biomass ; Bioreactors ; Biotechnology ; Carbon ; Cathodes ; Columns (process) ; Denitrification ; Drinking water ; Drinking water and swimming-pool water. Desalination ; Electric currents ; Electrodes ; Electrolysis ; Environment and pollution ; Exact sciences and technology ; Flow rates ; Fundamental and applied biological sciences. Psychology ; Honeycomb construction ; Hydraulic retention time ; Industrial applications and implications. Economical aspects ; Influents ; Microorganisms ; Models, Theoretical ; Nitrate reduction ; Nitrate removal ; Nitrates ; Nitrates - isolation &amp; purification ; Nitrates - metabolism ; Nitrogen dioxide ; Nutrient removal ; Pollution ; Polypropylene ; Potassium ; Potassium nitrate ; Removal ; Retention time ; Water Purification - methods ; Water treatment and pollution</subject><ispartof>Water science and technology, 2002-01, Vol.46 (11-12), p.39-44</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright IWA Publishing Dec 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-b9f1b9c398c2a5fff11bed2c35f1d4d7490a53a986954681a1b134cc0b9d23a43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14539401$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12523730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kusuda, T</contributor><contributor>Utsumi, H (eds)</contributor><creatorcontrib>DADANG, S</creatorcontrib><creatorcontrib>KAWANISHI, T</creatorcontrib><creatorcontrib>SHIMIZU, N</creatorcontrib><creatorcontrib>HAYASHI, Y</creatorcontrib><title>Nitrate removal rate in a continuous column denitrification reactor using hydrogen generated by electrolysis with carbon anodes and stainless cathodes</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>An autotrophic continuous denitrification process, using hydrogen generated by electrolysis with activated carbon anodes, was experimentally demonstrated to be an effective nitrate removal process. Several fixed bed columns with polypropylene packing and honeycomb shaped activated carbon anodes and stainless rod cathodes were set in a thermostat chamber at 30 degrees C, and potassium nitrate enriched tap water as influent was supplied at various flow rates and electric currents. Although the anode is in the same column where microbial biomass grows, sufficient nitrate removal was observed. For example, almost complete removal of nitrate and nitrite was observed at a hydraulic retention time (HRT) as short as 1.8 h. A model assuming successive denitrification reactions and plug-flow process, nitrate reduction rate = k1 [NO3-] [H2], and nitrite reduction rate = k2 [NO2-] [H2](1.5) was proposed. Calculated results with k1 = 1.3 mmol(-1) h(-1) and k2 = 3.3 mmol(-1.5) x h(-1) agreed well with all the experimental results.</description><subject>Activated carbon</subject><subject>Anode effect</subject><subject>Anodes</subject><subject>Applied sciences</subject><subject>Biofilms</subject><subject>Biological and medical sciences</subject><subject>Biological treatment of waters</subject><subject>Biomass</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Cathodes</subject><subject>Columns (process)</subject><subject>Denitrification</subject><subject>Drinking water</subject><subject>Drinking water and swimming-pool water. Desalination</subject><subject>Electric currents</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Environment and pollution</subject><subject>Exact sciences and technology</subject><subject>Flow rates</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Honeycomb construction</subject><subject>Hydraulic retention time</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Influents</subject><subject>Microorganisms</subject><subject>Models, Theoretical</subject><subject>Nitrate reduction</subject><subject>Nitrate removal</subject><subject>Nitrates</subject><subject>Nitrates - isolation &amp; purification</subject><subject>Nitrates - metabolism</subject><subject>Nitrogen dioxide</subject><subject>Nutrient removal</subject><subject>Pollution</subject><subject>Polypropylene</subject><subject>Potassium</subject><subject>Potassium nitrate</subject><subject>Removal</subject><subject>Retention time</subject><subject>Water Purification - methods</subject><subject>Water treatment and pollution</subject><issn>0273-1223</issn><issn>1996-9732</issn><isbn>9781843394327</isbn><isbn>1843394324</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNks1vFSEQwIkfsc_ao1dDYjRe9skAC8vRNPUjafSi5w0LbB_NLlRgbd4_4t9b1veSJh6sBzJAfjOTmfwQeglkS0GI97e5bCkhdEsk8EdoA0qJRklGH6MzJTvoOGOKMyqfoA2hkjVAKTtBz3O-JoRIxskzdAK0pUwyskG_v_qSdHE4uTn-0hP-8_ABa2xiKD4sccn1Oi1zwNaFSvvRG118DDVHmxITXrIPV3i3tyleuYDrcWsZi4c9dpMzJcVpn33Gt77ssNFpqMk6ROtyDRbnon2YXK6NdNmt3y_Q01FP2Z0d4yn68fHi-_nn5vLbpy_nHy4bwyUrzaBGGJRhqjNUt-M4AgzOUsPaESy3kiuiW6ZVJ1TLRQcaBmDcGDIoS5nm7BS9PdS9SfHn4nLpZ5-NmyYdXB28l7SrSxfwIEhVbVbPf4BcKEUfBkEA7ygTFXz3b5BQLlpyQF__hV7HJYW6wR6qFFUNUOsszYEyKeac3NjfJD_rtK-l-lWyvkrWr5L1q2SVf3Wsugyzs_f00aIKvDkCOhs9jUkH4_M9x9uqJAF2B6Ml2Zg</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>DADANG, S</creator><creator>KAWANISHI, T</creator><creator>SHIMIZU, N</creator><creator>HAYASHI, Y</creator><general>IWA Publishers</general><general>IWA Publishing</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope></search><sort><creationdate>20020101</creationdate><title>Nitrate removal rate in a continuous column denitrification reactor using hydrogen generated by electrolysis with carbon anodes and stainless cathodes</title><author>DADANG, S ; KAWANISHI, T ; SHIMIZU, N ; HAYASHI, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-b9f1b9c398c2a5fff11bed2c35f1d4d7490a53a986954681a1b134cc0b9d23a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Activated carbon</topic><topic>Anode effect</topic><topic>Anodes</topic><topic>Applied sciences</topic><topic>Biofilms</topic><topic>Biological and medical sciences</topic><topic>Biological treatment of waters</topic><topic>Biomass</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Cathodes</topic><topic>Columns (process)</topic><topic>Denitrification</topic><topic>Drinking water</topic><topic>Drinking water and swimming-pool water. Desalination</topic><topic>Electric currents</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Environment and pollution</topic><topic>Exact sciences and technology</topic><topic>Flow rates</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Honeycomb construction</topic><topic>Hydraulic retention time</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Influents</topic><topic>Microorganisms</topic><topic>Models, Theoretical</topic><topic>Nitrate reduction</topic><topic>Nitrate removal</topic><topic>Nitrates</topic><topic>Nitrates - isolation &amp; purification</topic><topic>Nitrates - metabolism</topic><topic>Nitrogen dioxide</topic><topic>Nutrient removal</topic><topic>Pollution</topic><topic>Polypropylene</topic><topic>Potassium</topic><topic>Potassium nitrate</topic><topic>Removal</topic><topic>Retention time</topic><topic>Water Purification - methods</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DADANG, S</creatorcontrib><creatorcontrib>KAWANISHI, T</creatorcontrib><creatorcontrib>SHIMIZU, N</creatorcontrib><creatorcontrib>HAYASHI, Y</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DADANG, S</au><au>KAWANISHI, T</au><au>SHIMIZU, N</au><au>HAYASHI, Y</au><au>Kusuda, T</au><au>Utsumi, H (eds)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrate removal rate in a continuous column denitrification reactor using hydrogen generated by electrolysis with carbon anodes and stainless cathodes</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2002-01-01</date><risdate>2002</risdate><volume>46</volume><issue>11-12</issue><spage>39</spage><epage>44</epage><pages>39-44</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><isbn>9781843394327</isbn><isbn>1843394324</isbn><coden>WSTED4</coden><abstract>An autotrophic continuous denitrification process, using hydrogen generated by electrolysis with activated carbon anodes, was experimentally demonstrated to be an effective nitrate removal process. Several fixed bed columns with polypropylene packing and honeycomb shaped activated carbon anodes and stainless rod cathodes were set in a thermostat chamber at 30 degrees C, and potassium nitrate enriched tap water as influent was supplied at various flow rates and electric currents. Although the anode is in the same column where microbial biomass grows, sufficient nitrate removal was observed. For example, almost complete removal of nitrate and nitrite was observed at a hydraulic retention time (HRT) as short as 1.8 h. A model assuming successive denitrification reactions and plug-flow process, nitrate reduction rate = k1 [NO3-] [H2], and nitrite reduction rate = k2 [NO2-] [H2](1.5) was proposed. Calculated results with k1 = 1.3 mmol(-1) h(-1) and k2 = 3.3 mmol(-1.5) x h(-1) agreed well with all the experimental results.</abstract><cop>London</cop><pub>IWA Publishers</pub><pmid>12523730</pmid><doi>10.2166/wst.2002.0714</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0273-1223
ispartof Water science and technology, 2002-01, Vol.46 (11-12), p.39-44
issn 0273-1223
1996-9732
language eng
recordid cdi_proquest_miscellaneous_72816661
source MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Activated carbon
Anode effect
Anodes
Applied sciences
Biofilms
Biological and medical sciences
Biological treatment of waters
Biomass
Bioreactors
Biotechnology
Carbon
Cathodes
Columns (process)
Denitrification
Drinking water
Drinking water and swimming-pool water. Desalination
Electric currents
Electrodes
Electrolysis
Environment and pollution
Exact sciences and technology
Flow rates
Fundamental and applied biological sciences. Psychology
Honeycomb construction
Hydraulic retention time
Industrial applications and implications. Economical aspects
Influents
Microorganisms
Models, Theoretical
Nitrate reduction
Nitrate removal
Nitrates
Nitrates - isolation & purification
Nitrates - metabolism
Nitrogen dioxide
Nutrient removal
Pollution
Polypropylene
Potassium
Potassium nitrate
Removal
Retention time
Water Purification - methods
Water treatment and pollution
title Nitrate removal rate in a continuous column denitrification reactor using hydrogen generated by electrolysis with carbon anodes and stainless cathodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrate%20removal%20rate%20in%20a%20continuous%20column%20denitrification%20reactor%20using%20hydrogen%20generated%20by%20electrolysis%20with%20carbon%20anodes%20and%20stainless%20cathodes&rft.jtitle=Water%20science%20and%20technology&rft.au=DADANG,%20S&rft.date=2002-01-01&rft.volume=46&rft.issue=11-12&rft.spage=39&rft.epage=44&rft.pages=39-44&rft.issn=0273-1223&rft.eissn=1996-9732&rft.isbn=9781843394327&rft.isbn_list=1843394324&rft.coden=WSTED4&rft_id=info:doi/10.2166/wst.2002.0714&rft_dat=%3Cproquest_cross%3E1943433191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943433191&rft_id=info:pmid/12523730&rfr_iscdi=true