Nitrate removal rate in a continuous column denitrification reactor using hydrogen generated by electrolysis with carbon anodes and stainless cathodes
An autotrophic continuous denitrification process, using hydrogen generated by electrolysis with activated carbon anodes, was experimentally demonstrated to be an effective nitrate removal process. Several fixed bed columns with polypropylene packing and honeycomb shaped activated carbon anodes and...
Gespeichert in:
Veröffentlicht in: | Water science and technology 2002-01, Vol.46 (11-12), p.39-44 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44 |
---|---|
container_issue | 11-12 |
container_start_page | 39 |
container_title | Water science and technology |
container_volume | 46 |
creator | DADANG, S KAWANISHI, T SHIMIZU, N HAYASHI, Y |
description | An autotrophic continuous denitrification process, using hydrogen generated by electrolysis with activated carbon anodes, was experimentally demonstrated to be an effective nitrate removal process. Several fixed bed columns with polypropylene packing and honeycomb shaped activated carbon anodes and stainless rod cathodes were set in a thermostat chamber at 30 degrees C, and potassium nitrate enriched tap water as influent was supplied at various flow rates and electric currents. Although the anode is in the same column where microbial biomass grows, sufficient nitrate removal was observed. For example, almost complete removal of nitrate and nitrite was observed at a hydraulic retention time (HRT) as short as 1.8 h. A model assuming successive denitrification reactions and plug-flow process, nitrate reduction rate = k1 [NO3-] [H2], and nitrite reduction rate = k2 [NO2-] [H2](1.5) was proposed. Calculated results with k1 = 1.3 mmol(-1) h(-1) and k2 = 3.3 mmol(-1.5) x h(-1) agreed well with all the experimental results. |
doi_str_mv | 10.2166/wst.2002.0714 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72816661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1943433191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-b9f1b9c398c2a5fff11bed2c35f1d4d7490a53a986954681a1b134cc0b9d23a43</originalsourceid><addsrcrecordid>eNqNks1vFSEQwIkfsc_ao1dDYjRe9skAC8vRNPUjafSi5w0LbB_NLlRgbd4_4t9b1veSJh6sBzJAfjOTmfwQeglkS0GI97e5bCkhdEsk8EdoA0qJRklGH6MzJTvoOGOKMyqfoA2hkjVAKTtBz3O-JoRIxskzdAK0pUwyskG_v_qSdHE4uTn-0hP-8_ABa2xiKD4sccn1Oi1zwNaFSvvRG118DDVHmxITXrIPV3i3tyleuYDrcWsZi4c9dpMzJcVpn33Gt77ssNFpqMk6ROtyDRbnon2YXK6NdNmt3y_Q01FP2Z0d4yn68fHi-_nn5vLbpy_nHy4bwyUrzaBGGJRhqjNUt-M4AgzOUsPaESy3kiuiW6ZVJ1TLRQcaBmDcGDIoS5nm7BS9PdS9SfHn4nLpZ5-NmyYdXB28l7SrSxfwIEhVbVbPf4BcKEUfBkEA7ygTFXz3b5BQLlpyQF__hV7HJYW6wR6qFFUNUOsszYEyKeac3NjfJD_rtK-l-lWyvkrWr5L1q2SVf3Wsugyzs_f00aIKvDkCOhs9jUkH4_M9x9uqJAF2B6Ml2Zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943433191</pqid></control><display><type>article</type><title>Nitrate removal rate in a continuous column denitrification reactor using hydrogen generated by electrolysis with carbon anodes and stainless cathodes</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>DADANG, S ; KAWANISHI, T ; SHIMIZU, N ; HAYASHI, Y</creator><contributor>Kusuda, T ; Utsumi, H (eds)</contributor><creatorcontrib>DADANG, S ; KAWANISHI, T ; SHIMIZU, N ; HAYASHI, Y ; Kusuda, T ; Utsumi, H (eds)</creatorcontrib><description>An autotrophic continuous denitrification process, using hydrogen generated by electrolysis with activated carbon anodes, was experimentally demonstrated to be an effective nitrate removal process. Several fixed bed columns with polypropylene packing and honeycomb shaped activated carbon anodes and stainless rod cathodes were set in a thermostat chamber at 30 degrees C, and potassium nitrate enriched tap water as influent was supplied at various flow rates and electric currents. Although the anode is in the same column where microbial biomass grows, sufficient nitrate removal was observed. For example, almost complete removal of nitrate and nitrite was observed at a hydraulic retention time (HRT) as short as 1.8 h. A model assuming successive denitrification reactions and plug-flow process, nitrate reduction rate = k1 [NO3-] [H2], and nitrite reduction rate = k2 [NO2-] [H2](1.5) was proposed. Calculated results with k1 = 1.3 mmol(-1) h(-1) and k2 = 3.3 mmol(-1.5) x h(-1) agreed well with all the experimental results.</description><identifier>ISSN: 0273-1223</identifier><identifier>ISBN: 9781843394327</identifier><identifier>ISBN: 1843394324</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2002.0714</identifier><identifier>PMID: 12523730</identifier><identifier>CODEN: WSTED4</identifier><language>eng</language><publisher>London: IWA Publishers</publisher><subject>Activated carbon ; Anode effect ; Anodes ; Applied sciences ; Biofilms ; Biological and medical sciences ; Biological treatment of waters ; Biomass ; Bioreactors ; Biotechnology ; Carbon ; Cathodes ; Columns (process) ; Denitrification ; Drinking water ; Drinking water and swimming-pool water. Desalination ; Electric currents ; Electrodes ; Electrolysis ; Environment and pollution ; Exact sciences and technology ; Flow rates ; Fundamental and applied biological sciences. Psychology ; Honeycomb construction ; Hydraulic retention time ; Industrial applications and implications. Economical aspects ; Influents ; Microorganisms ; Models, Theoretical ; Nitrate reduction ; Nitrate removal ; Nitrates ; Nitrates - isolation & purification ; Nitrates - metabolism ; Nitrogen dioxide ; Nutrient removal ; Pollution ; Polypropylene ; Potassium ; Potassium nitrate ; Removal ; Retention time ; Water Purification - methods ; Water treatment and pollution</subject><ispartof>Water science and technology, 2002-01, Vol.46 (11-12), p.39-44</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright IWA Publishing Dec 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-b9f1b9c398c2a5fff11bed2c35f1d4d7490a53a986954681a1b134cc0b9d23a43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14539401$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12523730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kusuda, T</contributor><contributor>Utsumi, H (eds)</contributor><creatorcontrib>DADANG, S</creatorcontrib><creatorcontrib>KAWANISHI, T</creatorcontrib><creatorcontrib>SHIMIZU, N</creatorcontrib><creatorcontrib>HAYASHI, Y</creatorcontrib><title>Nitrate removal rate in a continuous column denitrification reactor using hydrogen generated by electrolysis with carbon anodes and stainless cathodes</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>An autotrophic continuous denitrification process, using hydrogen generated by electrolysis with activated carbon anodes, was experimentally demonstrated to be an effective nitrate removal process. Several fixed bed columns with polypropylene packing and honeycomb shaped activated carbon anodes and stainless rod cathodes were set in a thermostat chamber at 30 degrees C, and potassium nitrate enriched tap water as influent was supplied at various flow rates and electric currents. Although the anode is in the same column where microbial biomass grows, sufficient nitrate removal was observed. For example, almost complete removal of nitrate and nitrite was observed at a hydraulic retention time (HRT) as short as 1.8 h. A model assuming successive denitrification reactions and plug-flow process, nitrate reduction rate = k1 [NO3-] [H2], and nitrite reduction rate = k2 [NO2-] [H2](1.5) was proposed. Calculated results with k1 = 1.3 mmol(-1) h(-1) and k2 = 3.3 mmol(-1.5) x h(-1) agreed well with all the experimental results.</description><subject>Activated carbon</subject><subject>Anode effect</subject><subject>Anodes</subject><subject>Applied sciences</subject><subject>Biofilms</subject><subject>Biological and medical sciences</subject><subject>Biological treatment of waters</subject><subject>Biomass</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Cathodes</subject><subject>Columns (process)</subject><subject>Denitrification</subject><subject>Drinking water</subject><subject>Drinking water and swimming-pool water. Desalination</subject><subject>Electric currents</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Environment and pollution</subject><subject>Exact sciences and technology</subject><subject>Flow rates</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Honeycomb construction</subject><subject>Hydraulic retention time</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Influents</subject><subject>Microorganisms</subject><subject>Models, Theoretical</subject><subject>Nitrate reduction</subject><subject>Nitrate removal</subject><subject>Nitrates</subject><subject>Nitrates - isolation & purification</subject><subject>Nitrates - metabolism</subject><subject>Nitrogen dioxide</subject><subject>Nutrient removal</subject><subject>Pollution</subject><subject>Polypropylene</subject><subject>Potassium</subject><subject>Potassium nitrate</subject><subject>Removal</subject><subject>Retention time</subject><subject>Water Purification - methods</subject><subject>Water treatment and pollution</subject><issn>0273-1223</issn><issn>1996-9732</issn><isbn>9781843394327</isbn><isbn>1843394324</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNks1vFSEQwIkfsc_ao1dDYjRe9skAC8vRNPUjafSi5w0LbB_NLlRgbd4_4t9b1veSJh6sBzJAfjOTmfwQeglkS0GI97e5bCkhdEsk8EdoA0qJRklGH6MzJTvoOGOKMyqfoA2hkjVAKTtBz3O-JoRIxskzdAK0pUwyskG_v_qSdHE4uTn-0hP-8_ABa2xiKD4sccn1Oi1zwNaFSvvRG118DDVHmxITXrIPV3i3tyleuYDrcWsZi4c9dpMzJcVpn33Gt77ssNFpqMk6ROtyDRbnon2YXK6NdNmt3y_Q01FP2Z0d4yn68fHi-_nn5vLbpy_nHy4bwyUrzaBGGJRhqjNUt-M4AgzOUsPaESy3kiuiW6ZVJ1TLRQcaBmDcGDIoS5nm7BS9PdS9SfHn4nLpZ5-NmyYdXB28l7SrSxfwIEhVbVbPf4BcKEUfBkEA7ygTFXz3b5BQLlpyQF__hV7HJYW6wR6qFFUNUOsszYEyKeac3NjfJD_rtK-l-lWyvkrWr5L1q2SVf3Wsugyzs_f00aIKvDkCOhs9jUkH4_M9x9uqJAF2B6Ml2Zg</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>DADANG, S</creator><creator>KAWANISHI, T</creator><creator>SHIMIZU, N</creator><creator>HAYASHI, Y</creator><general>IWA Publishers</general><general>IWA Publishing</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope></search><sort><creationdate>20020101</creationdate><title>Nitrate removal rate in a continuous column denitrification reactor using hydrogen generated by electrolysis with carbon anodes and stainless cathodes</title><author>DADANG, S ; KAWANISHI, T ; SHIMIZU, N ; HAYASHI, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-b9f1b9c398c2a5fff11bed2c35f1d4d7490a53a986954681a1b134cc0b9d23a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Activated carbon</topic><topic>Anode effect</topic><topic>Anodes</topic><topic>Applied sciences</topic><topic>Biofilms</topic><topic>Biological and medical sciences</topic><topic>Biological treatment of waters</topic><topic>Biomass</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Cathodes</topic><topic>Columns (process)</topic><topic>Denitrification</topic><topic>Drinking water</topic><topic>Drinking water and swimming-pool water. Desalination</topic><topic>Electric currents</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Environment and pollution</topic><topic>Exact sciences and technology</topic><topic>Flow rates</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Honeycomb construction</topic><topic>Hydraulic retention time</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Influents</topic><topic>Microorganisms</topic><topic>Models, Theoretical</topic><topic>Nitrate reduction</topic><topic>Nitrate removal</topic><topic>Nitrates</topic><topic>Nitrates - isolation & purification</topic><topic>Nitrates - metabolism</topic><topic>Nitrogen dioxide</topic><topic>Nutrient removal</topic><topic>Pollution</topic><topic>Polypropylene</topic><topic>Potassium</topic><topic>Potassium nitrate</topic><topic>Removal</topic><topic>Retention time</topic><topic>Water Purification - methods</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DADANG, S</creatorcontrib><creatorcontrib>KAWANISHI, T</creatorcontrib><creatorcontrib>SHIMIZU, N</creatorcontrib><creatorcontrib>HAYASHI, Y</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DADANG, S</au><au>KAWANISHI, T</au><au>SHIMIZU, N</au><au>HAYASHI, Y</au><au>Kusuda, T</au><au>Utsumi, H (eds)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrate removal rate in a continuous column denitrification reactor using hydrogen generated by electrolysis with carbon anodes and stainless cathodes</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2002-01-01</date><risdate>2002</risdate><volume>46</volume><issue>11-12</issue><spage>39</spage><epage>44</epage><pages>39-44</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><isbn>9781843394327</isbn><isbn>1843394324</isbn><coden>WSTED4</coden><abstract>An autotrophic continuous denitrification process, using hydrogen generated by electrolysis with activated carbon anodes, was experimentally demonstrated to be an effective nitrate removal process. Several fixed bed columns with polypropylene packing and honeycomb shaped activated carbon anodes and stainless rod cathodes were set in a thermostat chamber at 30 degrees C, and potassium nitrate enriched tap water as influent was supplied at various flow rates and electric currents. Although the anode is in the same column where microbial biomass grows, sufficient nitrate removal was observed. For example, almost complete removal of nitrate and nitrite was observed at a hydraulic retention time (HRT) as short as 1.8 h. A model assuming successive denitrification reactions and plug-flow process, nitrate reduction rate = k1 [NO3-] [H2], and nitrite reduction rate = k2 [NO2-] [H2](1.5) was proposed. Calculated results with k1 = 1.3 mmol(-1) h(-1) and k2 = 3.3 mmol(-1.5) x h(-1) agreed well with all the experimental results.</abstract><cop>London</cop><pub>IWA Publishers</pub><pmid>12523730</pmid><doi>10.2166/wst.2002.0714</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-1223 |
ispartof | Water science and technology, 2002-01, Vol.46 (11-12), p.39-44 |
issn | 0273-1223 1996-9732 |
language | eng |
recordid | cdi_proquest_miscellaneous_72816661 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Activated carbon Anode effect Anodes Applied sciences Biofilms Biological and medical sciences Biological treatment of waters Biomass Bioreactors Biotechnology Carbon Cathodes Columns (process) Denitrification Drinking water Drinking water and swimming-pool water. Desalination Electric currents Electrodes Electrolysis Environment and pollution Exact sciences and technology Flow rates Fundamental and applied biological sciences. Psychology Honeycomb construction Hydraulic retention time Industrial applications and implications. Economical aspects Influents Microorganisms Models, Theoretical Nitrate reduction Nitrate removal Nitrates Nitrates - isolation & purification Nitrates - metabolism Nitrogen dioxide Nutrient removal Pollution Polypropylene Potassium Potassium nitrate Removal Retention time Water Purification - methods Water treatment and pollution |
title | Nitrate removal rate in a continuous column denitrification reactor using hydrogen generated by electrolysis with carbon anodes and stainless cathodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrate%20removal%20rate%20in%20a%20continuous%20column%20denitrification%20reactor%20using%20hydrogen%20generated%20by%20electrolysis%20with%20carbon%20anodes%20and%20stainless%20cathodes&rft.jtitle=Water%20science%20and%20technology&rft.au=DADANG,%20S&rft.date=2002-01-01&rft.volume=46&rft.issue=11-12&rft.spage=39&rft.epage=44&rft.pages=39-44&rft.issn=0273-1223&rft.eissn=1996-9732&rft.isbn=9781843394327&rft.isbn_list=1843394324&rft.coden=WSTED4&rft_id=info:doi/10.2166/wst.2002.0714&rft_dat=%3Cproquest_cross%3E1943433191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943433191&rft_id=info:pmid/12523730&rfr_iscdi=true |