Multidrug resistance phenotype associated with selection of an aminopterin resistant dog kidney cell line

A determination of the mechanisms of drug resistance in tumour cells is important for developing strategies to combat such resistance in persons receiving chemotherapy. This report describes a combined cellular, biochemical, and molecular analysis of a dog kidney cell line selected for resistance to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacogenetics (London) 1991-12, Vol.1 (3), p.149-160
Hauptverfasser: Turker, M S, Duffin, K Z, Smith, A C, Martin, G M, Martin, A W, DiMartino, D L, Kersey, D S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 160
container_issue 3
container_start_page 149
container_title Pharmacogenetics (London)
container_volume 1
creator Turker, M S
Duffin, K Z
Smith, A C
Martin, G M
Martin, A W
DiMartino, D L
Kersey, D S
description A determination of the mechanisms of drug resistance in tumour cells is important for developing strategies to combat such resistance in persons receiving chemotherapy. This report describes a combined cellular, biochemical, and molecular analysis of a dog kidney cell line selected for resistance to increasing levels of the hydrophilic antifolate, aminopterin. Three distinct drug resistance phenotypes were observed in cells exhibiting high levels of aminopterin resistance. Two of these phenotypes were decreased aminopterin accumulation and increased levels of dihydrofolate reductase specific activity. The third drug resistance phenotype was noted initially as cross resistance to a variety of hydrophobic drugs indicating multidrug resistance. Biochemical assays demonstrated reduced accumulation of the hydrophobic fluorescent drug daunorubicin and of 3H-colchicine in the aminopterin resistant cells. These results were then correlated with increased levels of the multidrug resistance (mdr) gene product, P-glycoprotein, and mdr mRNA levels in the aminopterin resistant cells. However, experiments designed to prove a role for expression of the mdr gene in providing a degree of aminopterin resistance were unsuccessful. It is concluded that aminopterin selection in these dog kidney cells resulted in expression of at least three distinct drug resistance phenotypes and that one of these phenotypes, multidrug resistance, represented a secondary response to the aminopterin selection.
doi_str_mv 10.1097/00008571-199112000-00005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72776121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72776121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-f16cd3bae5bc0fc7c4c2813fc84b821d553c6bdc8d6999c642e1dee3015ebbe03</originalsourceid><addsrcrecordid>eNpFUMtOwzAQ9AFUSuETkHziFvDGeThHVPGSiriAxC1y7E1rSOxgO0L9e1IKZS-rHc3M7g4hFNgVsKq8ZlOJvIQEqgognaZkB-VHZM6qgiUcsrcTchrCO2OQc57OyAwKIdKsmBPzNHbRaD-uqcdgQpRWIR02aF3cDkhlCE4ZGVHTLxM3NGCHKhpnqWuptFT2xrohojf2YBCpdmv6YbTFLVXYdbQzFs_IcSu7gOe_fUFe725flg_J6vn-cXmzShQHFpMWCqV5IzFvFGtVqTKVCuCtElkjUtB5zlXRaCV0UVWVKrIUQSPy6TVsGmR8QS73voN3nyOGWPcm7K6QFt0Y6jItywJSmIhiT1TeheCxrQdveum3NbB6l2z9l2x9SPYHyifpxe-OselR_wv3sfJv0Lx5Kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72776121</pqid></control><display><type>article</type><title>Multidrug resistance phenotype associated with selection of an aminopterin resistant dog kidney cell line</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><creator>Turker, M S ; Duffin, K Z ; Smith, A C ; Martin, G M ; Martin, A W ; DiMartino, D L ; Kersey, D S</creator><creatorcontrib>Turker, M S ; Duffin, K Z ; Smith, A C ; Martin, G M ; Martin, A W ; DiMartino, D L ; Kersey, D S</creatorcontrib><description>A determination of the mechanisms of drug resistance in tumour cells is important for developing strategies to combat such resistance in persons receiving chemotherapy. This report describes a combined cellular, biochemical, and molecular analysis of a dog kidney cell line selected for resistance to increasing levels of the hydrophilic antifolate, aminopterin. Three distinct drug resistance phenotypes were observed in cells exhibiting high levels of aminopterin resistance. Two of these phenotypes were decreased aminopterin accumulation and increased levels of dihydrofolate reductase specific activity. The third drug resistance phenotype was noted initially as cross resistance to a variety of hydrophobic drugs indicating multidrug resistance. Biochemical assays demonstrated reduced accumulation of the hydrophobic fluorescent drug daunorubicin and of 3H-colchicine in the aminopterin resistant cells. These results were then correlated with increased levels of the multidrug resistance (mdr) gene product, P-glycoprotein, and mdr mRNA levels in the aminopterin resistant cells. However, experiments designed to prove a role for expression of the mdr gene in providing a degree of aminopterin resistance were unsuccessful. It is concluded that aminopterin selection in these dog kidney cells resulted in expression of at least three distinct drug resistance phenotypes and that one of these phenotypes, multidrug resistance, represented a secondary response to the aminopterin selection.</description><identifier>ISSN: 0960-314X</identifier><identifier>DOI: 10.1097/00008571-199112000-00005</identifier><identifier>PMID: 1688246</identifier><language>eng</language><publisher>England</publisher><subject>Aminopterin - pharmacokinetics ; Aminopterin - pharmacology ; Animals ; ATP-Binding Cassette, Sub-Family B, Member 1 ; Cell Line ; Colchicine - pharmacology ; Dogs ; Drug Resistance - genetics ; Immunohistochemistry ; Kidney ; Membrane Glycoproteins - metabolism ; Phenotype ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Tetrahydrofolate Dehydrogenase - metabolism</subject><ispartof>Pharmacogenetics (London), 1991-12, Vol.1 (3), p.149-160</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-f16cd3bae5bc0fc7c4c2813fc84b821d553c6bdc8d6999c642e1dee3015ebbe03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1688246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Turker, M S</creatorcontrib><creatorcontrib>Duffin, K Z</creatorcontrib><creatorcontrib>Smith, A C</creatorcontrib><creatorcontrib>Martin, G M</creatorcontrib><creatorcontrib>Martin, A W</creatorcontrib><creatorcontrib>DiMartino, D L</creatorcontrib><creatorcontrib>Kersey, D S</creatorcontrib><title>Multidrug resistance phenotype associated with selection of an aminopterin resistant dog kidney cell line</title><title>Pharmacogenetics (London)</title><addtitle>Pharmacogenetics</addtitle><description>A determination of the mechanisms of drug resistance in tumour cells is important for developing strategies to combat such resistance in persons receiving chemotherapy. This report describes a combined cellular, biochemical, and molecular analysis of a dog kidney cell line selected for resistance to increasing levels of the hydrophilic antifolate, aminopterin. Three distinct drug resistance phenotypes were observed in cells exhibiting high levels of aminopterin resistance. Two of these phenotypes were decreased aminopterin accumulation and increased levels of dihydrofolate reductase specific activity. The third drug resistance phenotype was noted initially as cross resistance to a variety of hydrophobic drugs indicating multidrug resistance. Biochemical assays demonstrated reduced accumulation of the hydrophobic fluorescent drug daunorubicin and of 3H-colchicine in the aminopterin resistant cells. These results were then correlated with increased levels of the multidrug resistance (mdr) gene product, P-glycoprotein, and mdr mRNA levels in the aminopterin resistant cells. However, experiments designed to prove a role for expression of the mdr gene in providing a degree of aminopterin resistance were unsuccessful. It is concluded that aminopterin selection in these dog kidney cells resulted in expression of at least three distinct drug resistance phenotypes and that one of these phenotypes, multidrug resistance, represented a secondary response to the aminopterin selection.</description><subject>Aminopterin - pharmacokinetics</subject><subject>Aminopterin - pharmacology</subject><subject>Animals</subject><subject>ATP-Binding Cassette, Sub-Family B, Member 1</subject><subject>Cell Line</subject><subject>Colchicine - pharmacology</subject><subject>Dogs</subject><subject>Drug Resistance - genetics</subject><subject>Immunohistochemistry</subject><subject>Kidney</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Phenotype</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Tetrahydrofolate Dehydrogenase - metabolism</subject><issn>0960-314X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFUMtOwzAQ9AFUSuETkHziFvDGeThHVPGSiriAxC1y7E1rSOxgO0L9e1IKZS-rHc3M7g4hFNgVsKq8ZlOJvIQEqgognaZkB-VHZM6qgiUcsrcTchrCO2OQc57OyAwKIdKsmBPzNHbRaD-uqcdgQpRWIR02aF3cDkhlCE4ZGVHTLxM3NGCHKhpnqWuptFT2xrohojf2YBCpdmv6YbTFLVXYdbQzFs_IcSu7gOe_fUFe725flg_J6vn-cXmzShQHFpMWCqV5IzFvFGtVqTKVCuCtElkjUtB5zlXRaCV0UVWVKrIUQSPy6TVsGmR8QS73voN3nyOGWPcm7K6QFt0Y6jItywJSmIhiT1TeheCxrQdveum3NbB6l2z9l2x9SPYHyifpxe-OselR_wv3sfJv0Lx5Kg</recordid><startdate>19911201</startdate><enddate>19911201</enddate><creator>Turker, M S</creator><creator>Duffin, K Z</creator><creator>Smith, A C</creator><creator>Martin, G M</creator><creator>Martin, A W</creator><creator>DiMartino, D L</creator><creator>Kersey, D S</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19911201</creationdate><title>Multidrug resistance phenotype associated with selection of an aminopterin resistant dog kidney cell line</title><author>Turker, M S ; Duffin, K Z ; Smith, A C ; Martin, G M ; Martin, A W ; DiMartino, D L ; Kersey, D S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-f16cd3bae5bc0fc7c4c2813fc84b821d553c6bdc8d6999c642e1dee3015ebbe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Aminopterin - pharmacokinetics</topic><topic>Aminopterin - pharmacology</topic><topic>Animals</topic><topic>ATP-Binding Cassette, Sub-Family B, Member 1</topic><topic>Cell Line</topic><topic>Colchicine - pharmacology</topic><topic>Dogs</topic><topic>Drug Resistance - genetics</topic><topic>Immunohistochemistry</topic><topic>Kidney</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Phenotype</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Tetrahydrofolate Dehydrogenase - metabolism</topic><toplevel>online_resources</toplevel><creatorcontrib>Turker, M S</creatorcontrib><creatorcontrib>Duffin, K Z</creatorcontrib><creatorcontrib>Smith, A C</creatorcontrib><creatorcontrib>Martin, G M</creatorcontrib><creatorcontrib>Martin, A W</creatorcontrib><creatorcontrib>DiMartino, D L</creatorcontrib><creatorcontrib>Kersey, D S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Pharmacogenetics (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turker, M S</au><au>Duffin, K Z</au><au>Smith, A C</au><au>Martin, G M</au><au>Martin, A W</au><au>DiMartino, D L</au><au>Kersey, D S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multidrug resistance phenotype associated with selection of an aminopterin resistant dog kidney cell line</atitle><jtitle>Pharmacogenetics (London)</jtitle><addtitle>Pharmacogenetics</addtitle><date>1991-12-01</date><risdate>1991</risdate><volume>1</volume><issue>3</issue><spage>149</spage><epage>160</epage><pages>149-160</pages><issn>0960-314X</issn><abstract>A determination of the mechanisms of drug resistance in tumour cells is important for developing strategies to combat such resistance in persons receiving chemotherapy. This report describes a combined cellular, biochemical, and molecular analysis of a dog kidney cell line selected for resistance to increasing levels of the hydrophilic antifolate, aminopterin. Three distinct drug resistance phenotypes were observed in cells exhibiting high levels of aminopterin resistance. Two of these phenotypes were decreased aminopterin accumulation and increased levels of dihydrofolate reductase specific activity. The third drug resistance phenotype was noted initially as cross resistance to a variety of hydrophobic drugs indicating multidrug resistance. Biochemical assays demonstrated reduced accumulation of the hydrophobic fluorescent drug daunorubicin and of 3H-colchicine in the aminopterin resistant cells. These results were then correlated with increased levels of the multidrug resistance (mdr) gene product, P-glycoprotein, and mdr mRNA levels in the aminopterin resistant cells. However, experiments designed to prove a role for expression of the mdr gene in providing a degree of aminopterin resistance were unsuccessful. It is concluded that aminopterin selection in these dog kidney cells resulted in expression of at least three distinct drug resistance phenotypes and that one of these phenotypes, multidrug resistance, represented a secondary response to the aminopterin selection.</abstract><cop>England</cop><pmid>1688246</pmid><doi>10.1097/00008571-199112000-00005</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-314X
ispartof Pharmacogenetics (London), 1991-12, Vol.1 (3), p.149-160
issn 0960-314X
language eng
recordid cdi_proquest_miscellaneous_72776121
source MEDLINE; Journals@Ovid Complete
subjects Aminopterin - pharmacokinetics
Aminopterin - pharmacology
Animals
ATP-Binding Cassette, Sub-Family B, Member 1
Cell Line
Colchicine - pharmacology
Dogs
Drug Resistance - genetics
Immunohistochemistry
Kidney
Membrane Glycoproteins - metabolism
Phenotype
RNA, Messenger - genetics
RNA, Messenger - metabolism
Tetrahydrofolate Dehydrogenase - metabolism
title Multidrug resistance phenotype associated with selection of an aminopterin resistant dog kidney cell line
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A47%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multidrug%20resistance%20phenotype%20associated%20with%20selection%20of%20an%20aminopterin%20resistant%20dog%20kidney%20cell%20line&rft.jtitle=Pharmacogenetics%20(London)&rft.au=Turker,%20M%20S&rft.date=1991-12-01&rft.volume=1&rft.issue=3&rft.spage=149&rft.epage=160&rft.pages=149-160&rft.issn=0960-314X&rft_id=info:doi/10.1097/00008571-199112000-00005&rft_dat=%3Cproquest_cross%3E72776121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72776121&rft_id=info:pmid/1688246&rfr_iscdi=true