An Empirical Comparison of SPM Preprocessing Parameters to the Analysis of fMRI Data
We present the results from two sets of Monte Carlo simulations aimed at evaluating the robustness of some preprocessing parameters of SPM99 for the analysis of functional magnetic resonance imaging (fMRI). Statistical robustness was estimated by implementing parametric and nonparametric simulation...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2002-09, Vol.17 (1), p.19-28 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | 1 |
container_start_page | 19 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 17 |
creator | Della-Maggiore, Valeria Chau, Wilkin Peres-Neto, Pedro R. McIntosh, Anthony R. |
description | We present the results from two sets of Monte Carlo simulations aimed at evaluating the robustness of some preprocessing parameters of SPM99 for the analysis of functional magnetic resonance imaging (fMRI). Statistical robustness was estimated by implementing parametric and nonparametric simulation approaches based on the images obtained from an event-related fMRI experiment. Simulated datasets were tested for combinations of the following parameters: basis function, global scaling, low-pass filter, high-pass filter and autoregressive modeling of serial autocorrelation. Based on single-subject SPM analysis, we derived the following conclusions that may serve as a guide for initial analysis of fMRI data using SPM99: (1) The canonical hemodynamic response function is a more reliable basis function to model the fMRI time series than HRF with time derivative. (2) Global scaling should be avoided since it may significantly decrease the power depending on the experimental design. (3) The use of a high-pass filter may be beneficial for event-related designs with fixed interstimulus intervals. (4) When dealing with fMRI time series with short interstimulus intervals ( |
doi_str_mv | 10.1006/nimg.2002.1113 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72773942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811902911134</els_id><sourcerecordid>72773942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-9ce0a134daa96a06d5876433a3d36587f6187507f1bc11874ace6e34c3e0a1f43</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMobk6vHiUgeOtMmrRpj2NOHTgcOs8hS7_OjLaZSSvs35uygSB4-t7D8758PAhdUzKmhKT3jak345iQeEwpZSdoSEmeRHki4tM-JyzKKM0H6ML7LSEkpzw7RwMa8ywmaTJEq0mDZ_XOOKNVhae23ilnvG2wLfH7coGXDnbOavDeNBu8VE7V0ILzuLW4_QQ8aVS198b3fLl4m-MH1apLdFaqysPV8Y7Qx-NsNX2OXl6f5tPJS6Q5422UayCKMl4olaeKpEWSiZQzpljB0pDLlGYiIaKka01D5EpDCoxr1vdKzkbo7rAbXvzqwLeyNl5DVakGbOeliIVgOY8DePsH3NrOhde9pEnwkOWCiUCND5R21nsHpdw5Uyu3l5TI3rbsbcvetuxth8LNcbZb11D84ke9AcgOAAQL3wac9NpAo6EwDnQrC2v-2_4B9KCL9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506589737</pqid></control><display><type>article</type><title>An Empirical Comparison of SPM Preprocessing Parameters to the Analysis of fMRI Data</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Della-Maggiore, Valeria ; Chau, Wilkin ; Peres-Neto, Pedro R. ; McIntosh, Anthony R.</creator><creatorcontrib>Della-Maggiore, Valeria ; Chau, Wilkin ; Peres-Neto, Pedro R. ; McIntosh, Anthony R.</creatorcontrib><description>We present the results from two sets of Monte Carlo simulations aimed at evaluating the robustness of some preprocessing parameters of SPM99 for the analysis of functional magnetic resonance imaging (fMRI). Statistical robustness was estimated by implementing parametric and nonparametric simulation approaches based on the images obtained from an event-related fMRI experiment. Simulated datasets were tested for combinations of the following parameters: basis function, global scaling, low-pass filter, high-pass filter and autoregressive modeling of serial autocorrelation. Based on single-subject SPM analysis, we derived the following conclusions that may serve as a guide for initial analysis of fMRI data using SPM99: (1) The canonical hemodynamic response function is a more reliable basis function to model the fMRI time series than HRF with time derivative. (2) Global scaling should be avoided since it may significantly decrease the power depending on the experimental design. (3) The use of a high-pass filter may be beneficial for event-related designs with fixed interstimulus intervals. (4) When dealing with fMRI time series with short interstimulus intervals (<8 s), the use of first-order autoregressive model is recommended over a low-pass filter (HRF) because it reduces the risk of inferential bias while providing a relatively good power. For datasets with interstimulus intervals longer than 8 seconds, temporal smoothing is not recommended since it decreases power. While the generalizability of our results may be limited, the methods we employed can be easily implemented by other scientists to determine the best parameter combination to analyze their data.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1006/nimg.2002.1113</identifier><identifier>PMID: 12482065</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Brain Mapping - methods ; Computer Simulation ; Data Interpretation, Statistical ; Hemodynamics - physiology ; Humans ; Linear Models ; Magnetic Resonance Imaging - statistics & numerical data ; Models, Neurological ; Monte Carlo Method ; Regression Analysis ; Reproducibility of Results ; Statistics, Nonparametric</subject><ispartof>NeuroImage (Orlando, Fla.), 2002-09, Vol.17 (1), p.19-28</ispartof><rights>2002 Elsevier Science (USA)</rights><rights>Copyright Elsevier Limited Sep 1, 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-9ce0a134daa96a06d5876433a3d36587f6187507f1bc11874ace6e34c3e0a1f43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1506589737?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12482065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Della-Maggiore, Valeria</creatorcontrib><creatorcontrib>Chau, Wilkin</creatorcontrib><creatorcontrib>Peres-Neto, Pedro R.</creatorcontrib><creatorcontrib>McIntosh, Anthony R.</creatorcontrib><title>An Empirical Comparison of SPM Preprocessing Parameters to the Analysis of fMRI Data</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>We present the results from two sets of Monte Carlo simulations aimed at evaluating the robustness of some preprocessing parameters of SPM99 for the analysis of functional magnetic resonance imaging (fMRI). Statistical robustness was estimated by implementing parametric and nonparametric simulation approaches based on the images obtained from an event-related fMRI experiment. Simulated datasets were tested for combinations of the following parameters: basis function, global scaling, low-pass filter, high-pass filter and autoregressive modeling of serial autocorrelation. Based on single-subject SPM analysis, we derived the following conclusions that may serve as a guide for initial analysis of fMRI data using SPM99: (1) The canonical hemodynamic response function is a more reliable basis function to model the fMRI time series than HRF with time derivative. (2) Global scaling should be avoided since it may significantly decrease the power depending on the experimental design. (3) The use of a high-pass filter may be beneficial for event-related designs with fixed interstimulus intervals. (4) When dealing with fMRI time series with short interstimulus intervals (<8 s), the use of first-order autoregressive model is recommended over a low-pass filter (HRF) because it reduces the risk of inferential bias while providing a relatively good power. For datasets with interstimulus intervals longer than 8 seconds, temporal smoothing is not recommended since it decreases power. While the generalizability of our results may be limited, the methods we employed can be easily implemented by other scientists to determine the best parameter combination to analyze their data.</description><subject>Algorithms</subject><subject>Brain Mapping - methods</subject><subject>Computer Simulation</subject><subject>Data Interpretation, Statistical</subject><subject>Hemodynamics - physiology</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Magnetic Resonance Imaging - statistics & numerical data</subject><subject>Models, Neurological</subject><subject>Monte Carlo Method</subject><subject>Regression Analysis</subject><subject>Reproducibility of Results</subject><subject>Statistics, Nonparametric</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLwzAYhoMobk6vHiUgeOtMmrRpj2NOHTgcOs8hS7_OjLaZSSvs35uygSB4-t7D8758PAhdUzKmhKT3jak345iQeEwpZSdoSEmeRHki4tM-JyzKKM0H6ML7LSEkpzw7RwMa8ywmaTJEq0mDZ_XOOKNVhae23ilnvG2wLfH7coGXDnbOavDeNBu8VE7V0ILzuLW4_QQ8aVS198b3fLl4m-MH1apLdFaqysPV8Y7Qx-NsNX2OXl6f5tPJS6Q5422UayCKMl4olaeKpEWSiZQzpljB0pDLlGYiIaKka01D5EpDCoxr1vdKzkbo7rAbXvzqwLeyNl5DVakGbOeliIVgOY8DePsH3NrOhde9pEnwkOWCiUCND5R21nsHpdw5Uyu3l5TI3rbsbcvetuxth8LNcbZb11D84ke9AcgOAAQL3wac9NpAo6EwDnQrC2v-2_4B9KCL9A</recordid><startdate>20020901</startdate><enddate>20020901</enddate><creator>Della-Maggiore, Valeria</creator><creator>Chau, Wilkin</creator><creator>Peres-Neto, Pedro R.</creator><creator>McIntosh, Anthony R.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20020901</creationdate><title>An Empirical Comparison of SPM Preprocessing Parameters to the Analysis of fMRI Data</title><author>Della-Maggiore, Valeria ; Chau, Wilkin ; Peres-Neto, Pedro R. ; McIntosh, Anthony R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-9ce0a134daa96a06d5876433a3d36587f6187507f1bc11874ace6e34c3e0a1f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Brain Mapping - methods</topic><topic>Computer Simulation</topic><topic>Data Interpretation, Statistical</topic><topic>Hemodynamics - physiology</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Magnetic Resonance Imaging - statistics & numerical data</topic><topic>Models, Neurological</topic><topic>Monte Carlo Method</topic><topic>Regression Analysis</topic><topic>Reproducibility of Results</topic><topic>Statistics, Nonparametric</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Della-Maggiore, Valeria</creatorcontrib><creatorcontrib>Chau, Wilkin</creatorcontrib><creatorcontrib>Peres-Neto, Pedro R.</creatorcontrib><creatorcontrib>McIntosh, Anthony R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Della-Maggiore, Valeria</au><au>Chau, Wilkin</au><au>Peres-Neto, Pedro R.</au><au>McIntosh, Anthony R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Empirical Comparison of SPM Preprocessing Parameters to the Analysis of fMRI Data</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2002-09-01</date><risdate>2002</risdate><volume>17</volume><issue>1</issue><spage>19</spage><epage>28</epage><pages>19-28</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>We present the results from two sets of Monte Carlo simulations aimed at evaluating the robustness of some preprocessing parameters of SPM99 for the analysis of functional magnetic resonance imaging (fMRI). Statistical robustness was estimated by implementing parametric and nonparametric simulation approaches based on the images obtained from an event-related fMRI experiment. Simulated datasets were tested for combinations of the following parameters: basis function, global scaling, low-pass filter, high-pass filter and autoregressive modeling of serial autocorrelation. Based on single-subject SPM analysis, we derived the following conclusions that may serve as a guide for initial analysis of fMRI data using SPM99: (1) The canonical hemodynamic response function is a more reliable basis function to model the fMRI time series than HRF with time derivative. (2) Global scaling should be avoided since it may significantly decrease the power depending on the experimental design. (3) The use of a high-pass filter may be beneficial for event-related designs with fixed interstimulus intervals. (4) When dealing with fMRI time series with short interstimulus intervals (<8 s), the use of first-order autoregressive model is recommended over a low-pass filter (HRF) because it reduces the risk of inferential bias while providing a relatively good power. For datasets with interstimulus intervals longer than 8 seconds, temporal smoothing is not recommended since it decreases power. While the generalizability of our results may be limited, the methods we employed can be easily implemented by other scientists to determine the best parameter combination to analyze their data.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12482065</pmid><doi>10.1006/nimg.2002.1113</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2002-09, Vol.17 (1), p.19-28 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_72773942 |
source | MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland |
subjects | Algorithms Brain Mapping - methods Computer Simulation Data Interpretation, Statistical Hemodynamics - physiology Humans Linear Models Magnetic Resonance Imaging - statistics & numerical data Models, Neurological Monte Carlo Method Regression Analysis Reproducibility of Results Statistics, Nonparametric |
title | An Empirical Comparison of SPM Preprocessing Parameters to the Analysis of fMRI Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A08%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Empirical%20Comparison%20of%20SPM%20Preprocessing%20Parameters%20to%20the%20Analysis%20of%20fMRI%20Data&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Della-Maggiore,%20Valeria&rft.date=2002-09-01&rft.volume=17&rft.issue=1&rft.spage=19&rft.epage=28&rft.pages=19-28&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1006/nimg.2002.1113&rft_dat=%3Cproquest_cross%3E72773942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506589737&rft_id=info:pmid/12482065&rft_els_id=S1053811902911134&rfr_iscdi=true |